SEARCH

SEARCH BY CITATION

Keywords:

  • Beta-secretase inhibitor;
  • HIV Protease inhibitor;
  • HTLV Protease inhibitor;
  • Plasmepsin inhibitor;
  • Renin inhibitor

Abstract

In this retrospective, personal review covering our research from the late 1980s until 2007, we outline nearly two-decade worth of our own work on several aspartic protease inhibitors including those affecting renin, HIV-1 protease, plasmepsins, β-secretase, and HTLV-I protease and we report on aspartic protease inhibitors as potential drugs to treat hypertension, AIDS, malaria, Alzheimer's disease and adult T-cell leukemia, HTLV-I associated myelopathy / tropical spastic paraparesis, and various, respectively, associated diseases. Herein, we describe our methods for rational substrate-based drug design of peptidomimetics that potently inhibit the activity of renin, HIV-1 protease, plasmepsins, β-secretase, and HTLV-I protease accordingly, using an appropriately selected inhibitory residue that contained a hydroxymethylcarbonyl isostere. Although this non-hydrolyzable isostere mimics the transition state that is formed during protein cleavage of a substrate, the isostere-containing inhibitor is not cleaved. We highlight our optimization studies in which we used various techniques and tools such as truncation studies, natural and non-natural amino acid substitution studies, various moieties to promote chemical and pharmacological stability, X-ray crystallography, computer-assisted docking and dynamic simulations, quantitative structure-activity relationship studies, and various other methods that this review can barely mention.