• 1
    Alspaugh MA, Whaley WW, Wohl MJ, Bunin JJ. Sjögren's syndrome. In: KelleyWN, HarrisEDJr, RuddyS, SledgeCB, editors. Textbook of rheumatology. Philadelphia: WB Saunders; 1981. p. 97199.
  • 2
    Daniel TE. Labial salivary gland biopsy in Sjögren's syndrome: assessment as a diagnostic criterion in 362 suspected cases. Arthritis Rheum 1984; 27: 14756.
  • 3
    Hamano H, Saito I, Haneji N, Mitsuhashi Y, Miyasaka N, Hayashi Y. Expression of cytokine genes during development of autoimmune sialadenitis in MRL/lpr mice. Eur J Immunol 1993; 23: 238791.
  • 4
    Fox RI, Kang H-I, Ando D, Abrams J, Pisa E. Cytokine mRNA expression in salivary gland biopsies of Sjögren's syndrome. J Immunol 1994; 152: 55329.
  • 5
    Bernfield M, Banerjee SD, Cohn RH. Dependence of salivary epithelial morphology and branching morphogenesis upon acid mucopolysaccharide protein (proteoglycan) at the epithelial surface. J Cell Biol 1972; 52: 67489.
  • 6
    Dayer J-M, Beutler B, Cerami A. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by synovial cells and dermal fibroblasts. J Exp Med 1985; 162: 21638.
  • 7
    Goldring MB, Birkhead JR, Suen L-F, Yamin R, Mizuno S, Glowacki J, et al. Interleukin-1β-modulated gene expression in immortalized human chondrocytes. J Clin Invest 1994; 94: 230716.
  • 8
    Konttinen YT, Kangaspunta P, Lindy O, Takagi M, Sorsa T, Segerberg M, et al. Collagenase in Sjögren's syndrome. Ann Rheum Dis 1994; 53: 8369.
  • 9
    Hanemaaijer R, Visser H, Konttinen YT, Koolwijk P, Verheijen JH. A novel and simple immunocapture assay for determination of gelatinase-B (MMP-9) activities in biological fluids: saliva from patients with Sjögren's syndrome contains increased latent and active gelatinase-B levels. Matrix Biol 1998; 17: 65765.
  • 10
    Konttinen YT, Halinen S, Hanemaaijer R, Sorsa T, Hietanen J, Ceponis A, et al. Matrix metalloproteinase (MMP)-9 type IV collagenase/gelatinase implicated in the pathogenesis of Sjögren's syndrome. Matrix Biol 1998; 17: 33547.
  • 11
    Simon C, Goepfert H, Boyd D. Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion. Cancer Res 1998; 58: 11359.
  • 12
    Sato H, Seiki M. Regulatory mechanism of 92 kDa type IV collagenase gene expression, which is associated with invasiveness of tumor cells. Oncogene 1993; 8: 395405.
  • 13
    Okada Y, Tsuchiya H, Shimizu H, Tomita K, Nakanishi I, Sato H, et al. Induction and stimulation of 92-kDa gelatinase/type IV collagenase production in osteosarcoma and fibrosarcoma cell lines by tumor necrosis factor α. Biochem Biophys Res Commun 1990; 171: 6107.
  • 14
    Beg AA, Ruben SM, Scheinman RI, Haskill S, Rosen CA, Baldwin AS Jr. IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev 1992; 6: 1899913.
  • 15
    Karin M. The beginning of the end: IκB kinase (IKK) and NF-κB activation. J Biol Chem 1999; 274: 2733942.
  • 16
    Azuma M, Aota K, Tamatani T, Motegi K, Yamashita T, Harada K, et al. Suppression of tumor necrosis factor α–induced matrix metalloproteinase 9 production by the introduction of a super-repressor form of inhibitor of nuclear factor κBα complementary DNA into immortalized human salivary gland acinar cells: prevention of the destruction of the acinar structure in Sjögren's syndrome salivary glands. Arthritis Rheum 2000; 43: 175667.
  • 17
    Azuma M, Motegi K, Aota K, Hayashi Y, Sato M. Role of cytokines in the destruction of acinar structure in Sjögren's syndrome salivary glands. Lab Invest 1997; 77: 26980.
  • 18
    Gutterman JU, Fien S, Quesada J, Horning SJ, Levine JF, Alexanian R, et al. Recombinant leukocyte A interferon: pharmacokinetics, single-dose tolerance, and biologic effects in cancer patients. Ann Intern Med 1982; 96: 54956.
  • 19
    Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977; 197: 4613.
  • 20
    Havell EA, Vilcek J. Inhibition of interferon secretion by vinblastine. J Cell Biol 1975; 64: 7169.
  • 21
    Ono M. Antitumor effect of cepharanthin: activation of regional lymph node lymphocytes by intratumoral administration. Clin Immunol 1987; 19: 10614.
  • 22
    Morioka S, Ono M, Tanaka N, Orita K. Synergistic activation of rat alveolar macrophages by cepharanthin and OK-432. Jpn J Cancer Chemother 1985; 12: 14705.
  • 23
    Azuma M, Tamatani T, Kasai Y, Sato M. Immortalization of normal human salivary gland cells with duct-, myoepithelial-, acinar-, or squamous phenotype by transfection of SV40 ori-mutant DNA. Lab Invest 1993; 69: 2442.
  • 24
    Azuma M, Tamatani T, Fukui K, Bando T, Sato M. Enhanced proteolytic activity is responsible for the aberrant morphogenetic development of SV40-immortalized normal human salivary gland cells grown on basement membrane components. Lab Invest 1994; 70: 21727.
  • 25
    Herron GS, Banba MJ, Clark EJ, Gavrilovic J, Werb Z. Secretion of metalloproteinases by stimulated capillary endothelial cells. J Biol Chem 1986; 261: 28148.
  • 26
    Claudio E, Segada F, Wrobel K, Ramos S, Bravo R, Lazo PS. Molecular mechanism of TNFα cytotoxicity: activation of NF-κB and nuclear translocation. Exp Cell Res 1996; 224: 6371.
  • 27
    Imbert V, Rupec RA, Livolsi IA, Pahl HL, Traenckner EB-M, Mueller-Dieckmann C, et al. Tyrosine phosphorylation of IκBα activates NF-κB without proteolytic degradation of IκBα. Cell 1996; 86: 7878.
  • 28
    Sambrook J, Fritsch EF, Maniatis T. Extraction, purification, and analysis of messenger RNA from eukaryotic cells. In: Molecular cloning, a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989. p. 7.017.83.
  • 29
    Liabakk N-B, Talbot I, Smith RA, Wilkinson K, Balkwill F. Matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res 1996; 56: 1906.
  • 30
    Yamaguchi F, Saya H, Bruner JM, Morrison RS. Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc Natl Acad Sci U S A 1994; 91: 4848.
  • 31
    Agrez M, Gu X, Turton J, Meldrum C, Niu J, Antalis T, et al. The αvβ6 integrin induces gelatinase B secretion in colon cancer cells. Int J Cancer 1999; 81: 907.
  • 32
    Azuma M, Motegi K, Aota K, Yamashita T, Yoshida H, Sato M. TGF-β1 inhibits NF-κB activity through induction of IκB-α expression in human salivary gland cells: a possible mechanism of growth suppression by TGF-β1. Exp Cell Res 1999; 250: 21322.
  • 33
    Aoudjit F, Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-Flip and implication for anoikis. J Cell Biol 2001; 152: 63343.
  • 34
    Jiang C, Wang Z, Ganther H, Lu J. Caspases as key executors of methyl selenium-induced apoptosis (anoikis) of DU-145 prostate cancer cells. Cancer Res 2001; 61: 306270.
  • 35
    Hotta T, Tanimura H, Yamaue H, Iwahashi M, Tani M, Tsunoda T, et al. Synergistic effects of tamoxifen and cepharanthine for circumventing multidrug resistance. Cancer Lett 1996; 107: 11723.
  • 36
    Asaumi J, Nishikawa K, Matsuoka H, Iwata M, Kawasaki S, Hiraki Y, et al. Direct antitumor effect of cepharanthin and combined effect with adriamycin against Ehrlich ascites tumor in mice. Anticancer Res 1995; 15: 6770.
  • 37
    Duffey DC, Chen Z, Dong G, Ondrey FG, Wolf JS, Brown K, et al. Expression of a dominant-negative mutant inhibitor-κBα of nuclear factor-κB in human head and neck squamous cell carcinoma inhibits survival, proinflammatory cytokine expression, and tumor growth in vivo. Cancer Res 1999; 59: 346874.
  • 38
    Dong G, Chen Z, Kato T, Wuges CV. The host environment promotes the constitutive activation of nuclear factor κB and proinflammatory cytokine expression during metastatic tumor progression of murine squamous cell carcinoma. Cancer Res 1999; 59: 3495504.
  • 39
    Beg AA, Baltimore D. An essential role for NF-κB in preventing TNF-α induced cell death. Science 1996; 274: 7824.
  • 40
    Wang C-Y, Mayo MW, Baldwin AS Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 1996; 274: 7847.
  • 41
    Van Antwerp DJ, Marin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-α-induced apoptosis by NF-κB. Science 1996; 274: 7879.
  • 42
    Han Y, Brasier AR. Mechanism for biphasic Rel A: NF-κB1 nuclear translocation in tumor necrosis factor α-stimulated hepatocytes. J Biol Chem 1997; 272: 982532.
  • 43
    Baldwin AS Jr. The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 64983.
  • 44
    Yamamoto Y, Yin M-J, Lin K-M, Gaynor RB. Sulindac inhibits activation of the NF-κB pathway. J Biol Chem 1999; 274: 2730714.
  • 45
    Mukaido N, Morita M, Ishikawa Y, Rice N, Okamoto SI, Kasahara T, et al. Novel mechanism of glucocorticoid mediated gene repression: nuclear factor κB is target for glucocorticoid mediated interleukin-8 gene repression. J Biol Chem 1994; 269: 1328995.
  • 46
    Thanos D, Maniatis T. Identification of the rel family members required for virus induction of the human β interferon gene. Mol Cell Biol 1995; 15: 15264.
  • 47
    Nourbakhsh M, Kälble S, Dörrie A, Hauser H, Resch K, Kracht M. The NF-κB repressing factor is involved in basal repression and interleukin (IL)-1-induced activation of IL-8 transcription by binding to a conserved NF-κB-flanking sequence element. J Biol Chem 2001; 276: 45018.
  • 48
    Nourbakhsh M, Hauser H. Constitutive silencing of IFN-β promoter is mediated by NRF (NF-κB-repressing factor), a nuclear inhibitor of NF-κB. EMBO J 1999; 18: 641525.
  • 49
    Kopp E, Ghosh S. Inhibition of NF-κB by sodium salicylate and aspirin. Science 1994; 265: 9569.
  • 50
    Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkila P, et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 1999; 17: 76874.
  • 51
    Ono M, Tanaka N, Tsuji M. Anti-inflammatory action of cepharanthin ointment ingredient in experimental animals: studies for the chronic inflammation and TNF-α production. Jpn J Inflamm 1994; 14: 4259.