• 1
    Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, et al. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 1999; 284: 16646.
  • 2
    Little CB, Flannery CR, Hughes CE, Mort JS, Roughley PJ, Dent C, et al. Aggrecanase versus matrix metalloproteinases in the catabolism of the interglobular domain of aggrecan in vitro. Biochem J 1999; 344: 618.
  • 3
    Tortorella MD, Pratta M, Liu RQ, Austin J, Ross OH, Abbaszade I, et al. Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J Biol Chem 2000; 275: 1856673.
  • 4
    Vankemmelbeke MN, Holen I, Wilson AG, Ilic MZ, Handley CJ, Kelner GS, et al. Expression and activity of ADAMTS-5 in synovium. Eur J Biochem 2001; 268: 125968.
  • 5
    Sandy JD, Verscharen C. Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem J 2001; 358: 61526.
  • 6
    Tortorella MD, Malfait AM, Deccico C, Arner E. The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (aggrecanase-2) in a model of cartilage degradation. Osteoarthritis Cartilage 2001; 9: 53952.
  • 7
    Wisniewski HG, Maier R, Lotz M, Lee S, Klampfer L, Lee TH, et al. TSG-6: A TNF-, IL-1-, and LPS-inducible secreted glycoprotein associated with arthritis. J Immunol 1993; 151: 6593601.
  • 8
    Wisniewski HG, Hua J-C, Poppers DM, Naime D, Vilcek J, Cronstein BN. TNF/IL-1-inducible protein TSG-6 potentiates plasmin inhibition by inter-α-inhibitor and exerts a strong anti-inflammatory effect in vivo. J Immunol 1996; 156: 160915.
  • 9
    Bárdos T, Kamath RV, Mikecz K, Glant TT. Anti-inflammatory and chondroprotective effect of TSG-6 (tumor necrosis factor-α-stimulated gene-6) in murine models of experimental arthritis. Am J Pathol 2001; 159: 171121.
  • 10
    Lee TH, Wisniewski HG, Vilcek J. A novel secretory tumor necrosis factor-inducible protein (TSG-6) is a member of the family of hyaluronate binding proteins, closely related to the adhesion receptor CD44. J Cell Biol 1992; 116: 54557.
  • 11
    Lee TH, Lee GW, Ziff EB, Vilcek J. Isolation and characterization of eight tumor necrosis factor-induced gene sequences from human fibroblasts. Mol Cell Biol 1990; 10: 19828.
  • 12
    Fülöp C, Kamath RV, Li Y, Otto JM, Salustri A, Olsen BR, et al. Coding sequence, exon-intron structure and chromosomal localization of murine TNF-stimulated gene 6 that is specifically expressed by expanding cumulus cell-oocyte complexes. Gene 1997; 202: 95102.
  • 13
    Bayliss MT, Howat SLT, Dudhia J, Murphy JM, Barry FP, Edwards JCW, et al. Up-regulation and differential expression of the hyaluronan-binding protein TSG-6 in cartilage and synovium in rheumatoid arthritis and osteoarthritis. Osteoarthritis Cartilage 2001; 9: 428.
  • 14
    Stove J, Huch K, Gunther K, Scharf H. Interleukin-1beta induces different gene expression of stromelysin, aggrecan and tumor-necrosis-factor-stimulated gene 6 in human osteoarthritic chondrocytes in vitro. Pathobiology 2000; 68: 1449.
  • 15
    Doege KJ, Sasaki M, Kimura T, Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan: human-specific repeats, and additional alternately spliced forms. J Biol Chem 1991; 266: 894902.
  • 16
    Ito K, Shinomura T, Zako M, Ujita M, Kimata K. Multiple forms of mouse PG-M, a large chondroitin sulfate proteoglycan generated by alternative splicing. J Biol Chem 1995; 270: 95865.
  • 17
    Underhill C. CD44: the hyaluronan receptor. J Cell Sci 1992; 103: 2938.
  • 18
    Yamada H, Watanabe K, Shimonaka M, Yamaguchi Y. Molecular cloning of brevican, a novel brain proteoglycan of the aggrecan/versican family. J Biol Chem 1994; 269: 1011926.
  • 19
    Knudson CB, Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis and disease. FASEB J 1993; 7: 123341.
  • 20
    Kohda D, Morton CJ, Parkar AA, Hatanaka H, Inagaka FM, Campbell ID, et al. Solution structure of the link module: a hyaluronan-binding domain involved in extracellular matrix stability and cell migration. Cell 1996; 86: 76775.
  • 21
    Hirakawa S, Oohashi T, Su WD, Yoshioka H, Murakami T, Arata J, et al. The brain link protein-1 (BRAL1): cDNA cloning, genomic structure, and characterization as a novel link protein expressed in adult brain. Biochim Biophys Res Commun 2000; 276: 9829.
  • 22
    Bork P, Beckmann G. A widespread module in developmentally regulated proteins. J Mol Biol 1993; 231: 53945.
  • 23
    Wisniewski HG, Vilcek J. TSG-6: an IL-1/TNF-inducible protein with anti-inflammatory activity. Cytokine Growth Factor Rev 1997; 8: 14356.
  • 24
    Yoshioka S, Ochsner S, Russell DL, Ujioka T, Fujii S, Richards JS, et al. Expression of tumor necrosis factor-stimulated gene-6 in the rat ovary in response to an ovulatory dose of gonadotropin. Endocrinology 2000; 141: 41149.
  • 25
    Carrette O, Nemade RV, Day AJ, Brickner A, Larsen WJ. TSG-6 is concentrated in the extracellular matrix of mouse cumulus oocyte complexes through hyaluronan and inter-alpha-inhibitor binding. Biol Reprod 2001; 65: 3018.
  • 26
    Wisniewski H-G, Burgess WH, Oppenhein JD, Vilcek J. TSG-6, an arthritis-associated hyaluronan binding protein, forms a stable complex with the serum protein inter-α-inhibitor. Biochemistry 1994; 33: 74239.
  • 27
    Ronday HK, Smits HH, van Muijen GNP, Pruszczynski MSM, Dolhain RJEM, van Langelaan EJ, et al. Difference in expression of the plasminogen activation system in synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Br J Rheumatol 1996; 35: 41623.
  • 28
    Bost F, Diarra-Mehrpour M, Martin JP. Inter-α-trypsin inhibitor proteoglycan family: a group of proteins binding and stabilizing the extracellular matrix. Eur J Biochem 1998; 252: 33946.
  • 29
    Mindrescu C, Thorbecke GJ, Klein MJ, Vilcek J, Wisniewski HG. Amelioration of collagen-induced arthritis in DBA/1J mice by recombinant TSG-6, a tumor necrosis factor/interleukin-1-inducible protein. Arthritis Rheum 2000; 43: 266877.
  • 30
    Kohno K, Sullivan M, Yamada Y. Structure of the promoter of the rat type II procollagen gene. J Biol Chem 1985; 260: 44417.
  • 31
    Horton W, Miyashita T, Kohno K, Hassell JR, Yamada Y. Identification of a phenotype-specific enhancer in the first intron of the rat collagen II gene. Proc Natl Acad Sci U S A 1987; 84: 88648.
  • 32
    Glant TT, Mikecz K, Cole A, Bittar T, Lark MW, Sandell L, et al. In situ localization of metalloproteinases and TIMP in interfacial membranes of loosened total hip arthroplasties [abstract]. Trans ORS 1994; 19: 138.
  • 33
    Yao J, Glant TT, Lark MW, Mikecz K, Jacobs JJ, Hutchinson NI, et al. The potential role of fibroblasts in periprosthetic osteolysis: fibroblast response to titanium particles. J Bone Miner Res 1995; 10: 141727.
  • 34
    Glant TT, Jacobs JJ, Mikecz K, Yao J, Chubinskaya S, Williams JM, et al. Particulate-induced, prostaglandin- and cytokine-mediated bone resorption in an experimental system and in failed joint replacements. Am J Ther 1996; 3: 2741.
  • 35
    Glant T, Mikecz K. Antigenic profile of human, bovine and canine articular chondrocytes. Cell Tissue Res 1986; 224: 35969.
  • 36
    Sun D, Aydelotte MB, Maldonado B, Kuettner KE, Kimura JH. Clonal analysis of the population of chondrocytes from the Swarm rat chondrosarcoma in agarose culture. J Orthop Res 1986; 4: 42736.
  • 37
    Jannsen U, Thomas G, Glant TT, Phillips A. Regulation of inter-alpha-trypsin inhibitor (IαI) and tumor necrosis factor-stimulated gene 6 (TSG-6) expression in human renal proximal tubular epithelial cells. Kidney Int 2001; 60: 12636.
  • 38
    Poole CA, Glant TT, Schofield JR. Chondrons from articular cartilage. IV. Immunolocalization of proteoglycan epitopes in isolated canine tibial chondrons. J Histochem Cytochem 1991; 39: 117587.
  • 39
    Singer II, Kawka DW, Bayne EK, Donatelli SA, Weidner JR, Williams HA, et al. VDIPEN, a metalloproteinase-generated neoepitope, is induced and immunolocalized in articular cartilage during inflammatory arthritis. J Clin Invest 1995; 95: 217886.
  • 40
    Glant TT, Mikecz K, Poole AR. Monoclonal antibodies to different protein-related epitopes of human articular cartilage proteoglycans. Biochem J 1986; 234: 3141.
  • 41
    Cs-Szabó G, Roughley PJ, Plaas AHK, Glant TT. Large and small proteoglycans of osteoarthritic and rheumatoid articular cartilage. Arthritis Rheum 1995; 38: 6608.
  • 42
    Glant TT, Li Y, Cs-Szabó G, Altanchimeg R, Fisher LW, Otto JM, et al. Overexpression of human biglycan in transgenic mice [abstract]. Trans ORS 1997; 22: 443.
  • 43
    Van Meurs JBJ, van Lent PLEM, Holthuysen AEM, Singer II, Bayne EK, van den Berg WB. Kinetics of aggrecanase- and metalloproteinase-induced neoepitopes in various stages of cartilage destruction in murine arthritis. Arthritis Rheum 1999; 42: 112839.
  • 44
    Rosenberg L. Chemical basis for the histological use of safranin O in the study of articular cartilage. J Bone Joint Surg Am 1971; 53: 6982.
  • 45
    Glansbeek HL, van Beuningen HM, Vitters EL, Morris EA, van der Kraan PM, van den Berg WB. Bone morphogenetic protein 2 stimulates articular cartilage proteoglycan synthesis in vivo but does not counteract interleukin-1α effects on proteoglycan synthesis and content. Arthritis Rheum 1997; 40: 10208.
  • 46
    Leprince P, Rogister B, Moonen G. A colorimetric assay for the simultaneous measurement of plasminogen activators and plasminogen activator inhibitors in serum-free conditioned media from cultured cells. Anal Biochem 1989; 177: 3416.
  • 47
    Flannery CR, Lark MW, Sandy JD. Identification of a stromelysin cleavage site within the interglobular domain of human aggrecan: evidence for proteolysis at this site in vivo in human articular cartilage. J Biol Chem 1992; 267: 100814.
  • 48
    Hughes CE, Caterson B, Fosang AJ, Roughley PJ, Mort JS. Monoclonal antibodies that specifically recognize neoepitope sequences generated by “aggrecanase” and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem J 1995; 305: 799804.
  • 49
    Yamada Y, Miyashita T, Savagner P, Horton W, Brown KS, Abramczuk J, et al. Regulation of the collagen II gene in vitro and in transgenic mice. Ann N Y Acad Sci 1990; 580: 817.
  • 50
    Meyer JF, Bieth J, Metais P. On the inhibition of elastase by serum: some distinguishing properties of alpha1-antitrypsin and alpha2-macroglobulin. Clin Chim Acta 1975; 62: 4353.
  • 51
    Kobayashi H, Sun GW, Terao T. Immunolocalization of hyaluronic acid and inter-alpha-trypsin inhibitor in mice. Cell Tissue Res 1999; 296: 58797.
  • 52
    Milner JM, Elliott S-F, Cawston TE. Activation of procollagenases is a key control point in cartilage collagen degradation: interaction of serine and metalloproteinase pathways. Arthritis Rheum 2001; 44: 208496.
  • 53
    Murphy G, Stanton H, Cowell S, Butler G, Knauper V, Atkinson S, et al. Mechanisms for pro matrix metalloproteinase activation. APMIS 1999; 107: 3844.
  • 54
    Okumura Y, Sato H, Seiki M, Kido H. Proteolytic activation of the precursor of membrane type 1 matrix metalloproteinase by human plasmin: a possible cell surface activator. FEBS Lett 1997; 402: 1814.
  • 55
    Hashimoto K, Nagao Y, Kato K, Mori Y, Ito A. Human urinary trypsin inhibitor inhibits the activation of pro-matrix metalloproteinases and proteoglycans release in rabbit articular cartilage. Life Sci 1998; 63: 20513.
  • 56
    Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 1999; 274: 1306676.
  • 57
    Davis GE, Pintar Allen KA, Salazar R, Maxwell SA. Matrix metalloproteinase-1 and -9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J Cell Sci 2001; 114: 91730.
  • 58
    Creemers E, Cleutjens J, Smits J, Heymans S, Moons L, Collen D, et al. Disruption of the plasminogen gene in mice abolishes wound healing after myocardial infarction. Am J Pathol 2000; 156: 186573.
  • 59
    Sandy JD, Westling J, Kenagy RD, Iruela-Arispe ML, Verscharen C, Rodriguez-Mazaneque JC, et al. Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J Biol Chem 2001; 276: 133728.
  • 60
    Gao G, Westling J, Thompson VP, Howell TD, Gottschall PE, Sandy JD. Activation of the proteolytic activity of ADAMTS4 (aggrecanase-1) by C-terminal truncation. J Biol Chem 2002; 277: 1103441.
  • 61
    Chevrier A, Mort JS, Crine P, Hoemann CD, Buschmann MD. Soluble recombinant neprilysin induces aggrecanase-mediated cleavage of aggrecan in cartilage explant cultures. Arch Biochem Biophys 2001; 396: 17886.
  • 62
    Kashiwagi M, Tortorella M, Nagase H, Brew K. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 2001; 276: 125014.
  • 63
    Otto JM, Cs-Szabó G, Gallagher J, Velins S, Mikecz K, Buzás EI, et al. Identification of multiple loci linked to inflammation and autoantibody production by a genome scan of a murine model of rheumatoid arthritis. Arthritis Rheum 1999; 42: 252431.
  • 64
    Otto JM, Chandrasekaran R, Vermes C, Mikecz K, Finnegan A, Rickert SE, et al. A genome scan using a novel genetic cross identifies new susceptibility loci and traits in a mouse model of rheumatoid arthritis. J Immunol 2000; 165: 527886.