• 1
    Taber LA. Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 1995; 48: 487545.
  • 2
    Carter DR. Mechanical loading history and skeletal biology. J Biomech 1987; 20: 1095109.
  • 3
    Cowin SC. Wolff's law of trabecular architecture at remodeling equilibrium. J Biomech Eng 1986; 108: 838.
  • 4
    Goldstein SA, Matthews LS, Kuhn JL, Hollister SJ. Trabecular bone remodeling: an experimental model. J Biomech 1991; 24 Suppl 1: 13550.
  • 5
    Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Sloof TJ. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 1987; 20: 113550.
  • 6
    Booth FW. Effect of limb immobilization on skeletal muscle. J Appl Physiol 1982; 52: 11138.
  • 7
    Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C. Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports Exerc 1975; 7: 24861.
  • 8
    Simard CP, Spector SA, Edgerton VR. Contractile properties of rat hind limb muscles immobilized at different lengths. Exp Neurol 1982; 77: 46782.
  • 9
    Tabary JC, Tabary C, Tarieu C, Tarieu G, Goldspink G. Physiological and structural changes in the cat's soleus muscle due to immobilization at different lengths by plaster casts. J Physiol 1972; 224: 23144.
  • 10
    Vandenburgh HH. Dynamic mechanical orientation of skeletal myofibers in vitro. Dev Biol 1982; 93: 43843.
  • 11
    Adams ME. Cartilage hypertrophy following canine anterior cruciate ligament transection differs among different areas of the joint. J Rheumatol 1989; 16: 81824.
  • 12
    Brandt KD, Braunstein EM, Visco DM, O'Connor B, Heck D, Albrecht M. Anterior (cranial) cruciate ligament transection in the dog: a bona fide model of osteoarthritis, not merely of cartilage injury and repair. J Rheumatol 1991; 18: 436-46.
  • 13
    Jurvelin J, Kiviranta F, Tammi M, Helminen HJ. Softening of canine articular cartilage after immobilization of the knee joint. Clin Orthop 1986; 207: 24652.
  • 14
    Setton LA, Mow VC, Muller FJ, Pita JC, Howell DS. Mechanical properties of canine articular cartilage are significantly altered following transection of the anterior cruciate ligament. J Orthop Res 1994; 12: 45163.
  • 15
    Pond MJ, Nuki G. Experimentally-induced osteoarthritis in the dog. Ann Rheum Dis 1973; 32: 3878.
  • 16
    McDevitt C, Gilbertson E, Muir H. An experimental model of osteoarthritis; early morphological and biochemical changes. J Bone Joint Surg Br 1977; 59: 2435.
  • 17
    Moskowitz RW, Howell DS, Goldberg VM. Cartilage proteoglycan alterations in an experimentally induced model of rabbit osteoarthritis. Arthritis Rheum 1979; 22: 15563
  • 18
    Bandi W. Chondromalacia patellae und femoro-patellare Arthrose. Aetiologie, Klinik, und Therapie. Helv Chir Acta 1972; Suppl 11: 370.
  • 19
    Insall J, Goldberg V, Salvati E. Recurrent dislocation and the high-riding patella. Clin Orthop 1972; 88: 679.
  • 20
    Outerbridge RE, Dunlop JAY. The problem of chondromalacia. Clin Orthop 1975; 110: 17796.
  • 21
    Maquet PGJ. Mechanics and osteoarthritis of the patellofemoral joint. Clin Orthop 1979; 144: 703.
  • 22
    Kettlekamp DB, Coyler RA. Osteoarthritis of the knee. In: MoskowitzRW, HowellDS, editors. Osteoarthritis: diagnosis and management. Philadelphia: WB Saunders; 1984. p. 40321.
  • 23
    Mankin HJ, Brandt KD, Shulman LE. Workshop on the pathogenesis of osteoarthritis: proceedings and recommendations. J Rheumatol 1986; 13: 112760.
  • 24
    Brandt KD, Myers SL, Burr D, Albrecht M. Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament. Arthritis Rheum 1991; 34: 156070.
  • 25
    Bray RC, Shrive NG, Frank CB, Chimich DD. The early effects of joint immobilization on medial collateral ligament healing in an ACL-deficient knee: a gross anatomic and biomechanical investigation in the adult rabbit model. J Orthop Res 1992; 10: 15766.
  • 26
    Herzog W, Diet S, Suter E, Mayzus P, Leonard TR, Muller C, et al. Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis. J Biomech 1998; 31: 113745.
  • 27
    Suter E, Herzog W, Leonard TR, Nguyen H. One-year changes in hindlimb kinematics, ground reaction forces and knee stability in an experimental model of osteoarthritis. J Biomech 1998; 31: 5117.
  • 28
    Vilensky JA, O'Connor BL, Brandt KD, Dunn EA, Rogers PI, DeLong CA. Serial kinematic analysis of the unstable knee after transection of the anterior cruciate ligament: temporal and angular changes in a canine model of osteoarthritis. J Orthop Res 1994; 12: 22937.
  • 29
    Herzog W, Adams ME, Matyas JR, Brooks JG. A preliminary study of hindlimb loading, morphology and biochemistry of articular cartilage in the ACL-deficient cat knee. Osteoarthritis Cartilage 1993; 1: 24351.
  • 30
    Clark A, Herzog W, Matyas JR, Barclay L, Leonard TR. In-situ chondrocyte deformation in endstage osteoarthritic (OA) articular cartilage [abstract]. Proceedings of the 18th Congress of the International Society of Biomechanics; 2001. p. 1623.
  • 31
    Krebs DE, Elbaum L, Riley PO, Hodge WA, Mann RW. Exercise and gait effects on in vivo hip contact pressures. Phys Ther 1991; 71: 3019.
  • 32
    Strickland EM, Fares M, Krebs DE, Riley PO, Givens-Heiss DL, Hodge WA, et al. In vivo acetabular contact pressures during rehabilitation. Part I: acute phase. Phys Ther 1992; 72: 6919.
  • 33
    Givens-Heiss DL, Krebs DE, Riley PO, Strickland EM, Fares M, Hodge WA, et al. In vivo acetabular contact pressures during rehabilitation. Part II: postacute phase. Phys Ther 1992; 72: 7005.
  • 34
    Fagerson TL, Krebs DE, Harris BA, Mann RW. Examining shibboleths of hip rehabilitation protocols suing in vivo contact pressures from an instrumented hemiarthroplasty. Physiotherapy (London) 1995; 81: 53340.
  • 35
    Luepongsak N, Krebs DE, Olsson E, Riley PO, Mann RW. Hip stress during lifting with bent and straight knees. Scand J Rehabil Med 1997; 29: 5764.
  • 36
    McGibbon CA, Krebs DE, Mann RW. In vivo hip pressures during cane and load-carrying gait. Arthritis Care Res 1997; 10: 3007.
  • 37
    Park SS, Krebs DE, Mann RW. Hip muscle co-contraction: evidence from concurrent in vivo pressure measurement and force estimation. Gait Posture 1999; 10: 21122.
  • 38
    Herzog W, Hasler EM, Maitland ME, Suter E, Leonard TR, Muller C. In vivo mechanics and in situ stability of the anterior cruciate ligament-deficient knee: an animal model of osteoarthritis. Sportorth Sporttr 1998; 14.2: 6774.
  • 39
    Hasler EM, Herzog W, Leonard TR, Stano A, Nguyen H. In-vivo knee joint loading and kinematics before and after ACL transection in an animal model. J Biomech 1998; 31: 25362.
  • 40
    Hasler EM, Herzog W. Quantification of in vivo patellofemoral contact forces before and after ACL transection. J Biomech 1998; 31: 3744.
  • 41
    Crowninshield RD, Brand RA. The prediction of forces in joint structures: distribution of intersegmental resultants. In: Exercise and sport science review. Philadelphia: The Franklin Institute Press, 1981. p. 15981.
  • 42
    Andrews JG. Biomechanical analysis of human motion. Kinesiology 1974; 4: 3242.
  • 43
    Herzog W. Force-sharing among synergistic muscles: theoretical considerations and experimental approaches. In: HolloszyJO, editor. Exercise and sport sciences reviews. Baltimore: Williams & Wilkins; 1996. p. 173202.
  • 44
    Herzog W, Leonard TR. Validation of optimization models that estimate the forces exerted by synergistic muscles. J Biomech 1991; 24S: 319.
  • 45
    Herzog W. Individual muscle force estimations using a non-linear optimal design. J Neurosci Methods 1987; 21: 16779.
  • 46
    Seireg A, Arvikar RJ. A mathematical model for evaluation of force in lower extremities of the musculoskeletal system. J Biomech 1973; 6: 31326.
  • 47
    Pierrynowski MR, Morrison JB. Estimating the muscle forces generated in the human lower extremity when walking: a physiological solution. Math Biosci 1985; 75: 4368.
  • 48
    Morrison JB. Bioengineering analysis of force actions transmitted by the knee joint. Biomed Eng 1968; 3: 16470.
  • 49
    Paul JP. Bioengineering studies of the forces transmitted by joints. II. Engineering analysis. In: KenediRM, editor. Biomechanics and related bioengineering topics. London: Pergamon Press; 1965. p. 36980.
  • 50
    Korvick DL, Pijanowski GJ, Schaeffer DJ. Three-dimensional kinematics of the intact and cranial cruciate ligament-deficient stifle of dogs. J Biomech 1994; 27: 7787.
  • 51
    Beard DJ, Soundarapandian RS, O'Connor JJ, Dodd CAF. Gait and electromyographic analysis of anterior cruciate ligament deficient subjects. Gait Posture 1996; 4: 838.
  • 52
    Hasler EM. In vivo knee loading before and after ACL transection in an animal model of osteoarthritis [dissertation]. University of Calgary; 1996.
  • 53
    Kotzar GM, Davy DT, Goldberg VM, Heiple KG, Berilla J, Heiple G, et al. Telemeterized in vivo hip joint force data: a report on two patients after total hip surgery. J Orthop Res 1991; 9: 62133.
  • 54
    Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech 1993; 26: 96990.
  • 55
    Herzog W, Hasler EM, Leonard TR. Experimental determination of in vivo pressure distribution in biologic joints. J Musculoskel Res 2000; 4: 17.
  • 56
    Krebs DE, Staples WH, Cuttita D, Zickel RE. Knee joint angle: its relationship to quadriceps femoris activity in normal and postarthrotomy limbs. Arch Phys Med Rehabil 1983; 64: 4417.
  • 57
    Suter E, Herzog W, Bray RC. Quadriceps inhibition following arthroscopy in patients with anterior knee pain. Clin Biomech 1998; 13: 3149.
  • 58
    Wu JZ, Herzog W, Epstein M. Modelling of location- and time-dependent deformation of chondrocytes during cartilage loading. J Biomech 1999; 32: 56372.
  • 59
    Guilak F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech 1995; 28: 152941.
  • 60
    Wu JZ, Herzog W. Elastic anisotropy of articular cartilage is associated with the microstructures of collagen fibers and chondrocytes. J Biomech 2002; 35: 93142.
  • 61
    Wu JZ, Herzog W, Epstein M. An improved solution for the contact of two biphasic cartilage layers. J Biomech 1997; 30: 3715.