• 1
    Medsger TA Jr. Systemic sclerosis (scleroderma): clinical aspects. In: KoopmanWJ, editor. Arthritis and allied conditions: a textbook of rheumatology. 14th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 1590624.
  • 2
    LeRoy EC. Increased collagen synthesis by scleroderma skin fibroblasts in vitro: a possible defect in the regulation or activation of scleroderma fibroblasts. J Clin Invest 1974; 54: 8809.
  • 3
    Varga J, Jimenez SA. Pathogenesis of scleroderma: cellular aspects. In: ClementsPJ, FurstDE, editors. Systemic sclerosis. Philadelphia: Williams & Wilkins; 1996. p. 12352.
  • 4
    Feghali CA, Bost KL, Boulware DW, Levy LS. Mechanisms of pathogenesis in scleroderma. I. Overexpression of interleukin-6 by fibroblasts cultured from affected skin sites of patients with scleroderma. J Rheumatol 1992; 19: 120711.
  • 5
    Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Grotendorst GR, et al. Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from patients with systemic sclerosis. J Invest Dermatol 1995; 105: 2804.
  • 6
    Kurasawa K, Hirose K, Sano H, Endo H, Shinkai H, Nawata Y, et al. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum 2000; 43: 245563.
  • 7
    Ihn H, Yamane K, Kubo M, Tamaki K. Blockade of endogenous transforming growth factor β signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor β receptors. Arthritis Rheum 2001; 44: 47480.
  • 8
    Kawaguchi Y. IL-1α gene expression and protein production by fibroblasts from patients with systemic sclerosis. Clin Exp Immunol 1994; 97: 44550.
  • 9
    Kawaguchi Y, Hara M, Wright TM. Endogenous IL-1α from systemic sclerosis fibroblasts induces IL-6 and PDGF-A. J Clin Invest 1999; 103: 125360.
  • 10
    Kawaguchi Y, Suzuki K, Hara M, Hidaka T, Ishizuka T, Kawagoe M, et al. Increased endothelin-1 production in fibroblasts derived from patients with systemic sclerosis. Ann Rheum Dis 1994; 53: 50610.
  • 11
    Caponi AM, Aguilera G, Fakunding JL, Catt KJ. Angiotensin II: receptors and mechanisms of action. In: SofferRL, editor. Biochemical regulation of blood pressure. New York: Wiley; 1982. p. 20562.
  • 12
    Peach MJ. Renin-angiotensin system: biochemistry and mechanism of action. Physiol Rev 1977; 57: 31370.
  • 13
    Ghiggeri GM, Oleggini R, Musante L, Caridi G, Gusmano R, Ravazzolo R. A DNA element in the α1 type III collagen promoter mediates a stimulatory response by angiotensin II. Kidney Int 2000; 58: 53748.
  • 14
    Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-β expression in rat glomerular mesangial cells. J Clin Invest 1994; 93: 24317.
  • 15
    Weber KT, Swamynathan SK, Guntaka RV, Sun Y. Angiotensin II and extracellular matrix homeostasis. Int J Biochem Cell Biol 1999; 31: 395403.
  • 16
    Kawano H, Do YS, Kawano Y, Starnes V, Barr M, Law RE, et al. Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation 2000; 101: 11307.
  • 17
    Guo G, Morrissey J, McCracken R, Tolley T, Liapis H, Klahr S. Contributions of angiotensin II and tumor necrosis factor-α to the development of renal fibrosis. Am J Renal Physiol 2001; 280: F77785.
  • 18
    Pathak M, Sarkar S, Vellaichamy E, Sen S. Role of myocytes in myocardial collagen production. Hypertension 2001; 37: 83340.
  • 19
    Taniyama Y, Morishita R, Nakagami H, Moriguchi A, Sakonjo H, Kim S, et al. Potential contribution of a novel antifibrotic factor, hepatocyte growth factor, to prevention of myocardial fibrosis by angiotensin II blockade in cardiomyopathic hamsters. Circulation 2000; 102: 24652.
  • 20
    Junaid A, Hostetter TH, Rosenberg ME. Interaction of angiotensin II and TGF-β1 in the rat remnant kidney. J Am Soc Nephrol 1997; 8: 17328.
  • 21
    Steen VD, Costantino JP, Shapiro AP, Medsger TA Jr. Outcome of renal crisis in systemic sclerosis: relation to availability of angiotensin converting enzyme (ACE) inhibitors. Ann Intern Med 1990; 113: 3527.
  • 22
    Dziadzio M, Denton CP, Smith R, Howell K, Blann A, Bowers E, et al. Losartan therapy for Raynaud's phenomenon and scleroderma. Arthritis Rheum 1999; 42: 264655.
  • 23
    Brunner HR. The new oral angiotensin II antagonist olmesartan medoxomil: a concise overview. J Hum Hypertens 2002; 16: S1316.
  • 24
    Subcommittee for Scleroderma Criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum 1980; 23: 58190.
  • 25
    LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, et al. Scleroderma (systemic sclerosis): classification, subsets, and pathogenesis. J Rheumatol 1988; 15: 2025.
  • 26
    Clements P, Lachenbruch P, Seibold J, White B, Weiner S, Martin R, et al. Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheumatol 1995; 22: 12815.
  • 27
    Volland H, Pradelles P, Ronco P, Azizi M, Simon D, Creminon C, et al. A solid-phase immobilized epitope immunoassay (SPIE-IA) permitting very sensitive and specific measurement of angiotensin II in plasma. J Immunol Methods 1999; 228: 3747.
  • 28
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 6805.
  • 29
    Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 1979; 76: 43504.
  • 30
    Kovalchik MT, Guggenheim SJ, Silverman MH, Robertson JS, Steigerwald JC. The kidney in progressive systemic sclerosis: a prospective study. Ann Intern Med 1978; 89: 8817.
  • 31
    Morgan L, Pipkin FB, Kalsheker N. Angiotensinogen: molecular biology, biochemistry and physiology. Int J Biochem Cell Biol 1996; 28: 121122.
  • 32
    Wang R, Ramos C, Joshi I, Zagariya A, Pardo A, Selman M, et al. Human lung myofibroblast-derived inducers of alveolar epithelial apoptosis identified as angiotensin peptides. Am J Physiol 1999; 277: L115864.
  • 33
    Karlsson C, Lindell K, Ottosson M, Sjostrom L, Carlsson B, Carlsson LM. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J Clin Endocrinol Metab 1998; 83: 39259.
  • 34
    Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 1990; 265: 2234857.
  • 35
    Urata H, Nishimura H, Ganten D. Chymase-dependent angiotensin II forming systems in humans. Am J Hypertens 1996; 9: 27784.
  • 36
    Richard V, Hurel-Merle S, Scalbert E, Ferry G, Lallemand F, Bessou J-P, et al. Functional evidence for a role of vascular chymase in the production of angiotensin II in isolated human arteries. Circulation 2001; 104: 7502.
  • 37
    Nishimoto M, Takai S, Kim S, Jin D, Yuda A, Sakaguchi M, et al. Significance of chymase-dependent angiotensin II-forming pathway in the development of vascular proliferation. Circulation 2001; 104: 12749.
  • 38
    Marshall RP, McAnulty RJ, Laurent GJ. Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. Am Respir Crit Care Med 2000; 161: 19992004.
  • 39
    Wolny A, Clozel JP, Rein J, Mory P, Vogt P, Turino M, et al. Functional and biochemical analysis of angiotensin II-forming pathways in the human heart. Circ Res 1997; 80: 21927.
  • 40
    Owen CA, Campbell EJ. Angiotensin II generation at the cell surface of activated neutrophils: novel cathepsin G-mediated catalytic activity that is resistant to inhibition. J Immunol 1998; 160: 143643.
  • 41
    De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 2000; 52: 41572.
  • 42
    Goodfield NE, Newby DE, Ludlam CA, Flapan AD. Effects of acute angiotensin II type 1 receptor antagonism and angiotensin converting enzyme inhibition on plasma fibrinolytic parameters in patients with heart failure. Circulation 1999; 99: 29835.
  • 43
    Davisson RL, Oliverio MI, Coffman TM, Sigmund CD. Divergent functions of angiotensin II receptor isoforms in the brain. J Clin Invest 2000; 106: 1036.
  • 44
    Wu L, Iwai M, Nakagami H, Li Z, Chen R, Suzuki J, et al. Roles of AT2 receptor stimulation associated with selective AT1 receptor blockade with valsartan in the improvement of inflammation-induced vascular injury. Circulation 2001; 104: 271621.
  • 45
    Nickenig G, Geisen G, Vetter H, Sachinidis A. Characterization of angiotensin receptors on human skin fibroblasts. J Mol Med 1997; 75: 21722.
  • 46
    Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995; 95: 6517.
  • 47
    Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, et al. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci U S A 1995; 92: 106637.
  • 48
    Huang XC, Richards EM, Sumners C. Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. J Biol Chem 1996; 271: 1563541.
  • 49
    Fujiyama S, Matsubara H, Nozawa Y, Maruyama K, Mori Y, Tsutsumi Y, et al. Angiotensin AT1 and AT2 receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF)-mediated EGF receptor transactivation. Circ Res 2001; 88: 22-9.
  • 50
    Mifune M, Sasamura H, Shimizu-Hirota R, Miyazaki H, Saruta T. Angiotensin II type 2 receptors stimulate collagen synthesis in cultured vascular smooth muscle cells. Hypertension 2000; 36: 84550.
  • 51
    Chua CC, Diglio CA, Siu BB, Chua BHL. Angiotensin II induces TGF-β1 production in rat heart endothelial cells. Biochim Biophys Acta 1994; 1223: 1417.
  • 52
    Lee AA, Dillmann WH, McCulloch AD, Villarreal FJ. Angiotensin II stimulates the autocrine production of transforming growth factor-β1 in adult rat cardiac fibroblasts. J Mol Cell Cardiol 1995; 27: 234757.
  • 53
    Campbell SC, Katwa LC. Angiotensin II stimulated expression of transforming growth factor-β1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 1997; 29: 194758.
  • 54
    Massague J. The transforming growth factor-β family. Annu Rev Cell Biol 1990; 6: 597641.
  • 55
    Kulozik M, Hogg A, Lankat-Buttgereit B, Krieg T. Co-localization of transforming growth factor β2 α1(I) procollagen mRNA in tissue sections of patients with systemic sclerosis. J Clin Invest 1990; 86: 91722.
  • 56
    Kawakami T, Ihn H, Xu W, Smith EA, LeRoy EC. Increased expression of TGF-β receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-β signaling to scleroderma phenotype. J Invest Dermatol 1998; 110: 4751.
  • 57
    Hao J, Wang B, Jones SC, Jassal DS, Dixon IM. Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro. Am J Physiol Heart Circ Physiol 2000; 279: H302030.