The spindle kinesin-like protein HsEg5 is an autoantigen in systemic lupus erythematosus

Authors


Abstract

Objective. Autoantibodies directed against the mitotic spindle apparatus (MSA) have been shown to target an antigen referred to as NuMA (nuclear mitotic apparatus). In this study, we identified a second MSA antigen as the spindle kinesin-like protein HsEg5. We studied the frequency of antibodies to HsEg5 in human sera that demonstrate the MSA pattern of staining, the frequency of autoantibodies to HsEg5 in patients with systemic lupus erythematosus (SLE), and the clinical features of patients with antibodies to HsEg5.

Methods. A prototype serum from an SLE patient was used to isolate a 4.8-kilobase complementary DNA (cDNA) from a HeLa cDNA library. Western blot, immunoprecipitation, and sequence analysis revealed that the antigen was an ∼130-kd protein, HsEg5. The frequency of autoantibodies to recombinant HsEg5 in 51 sera that demonstrated an MSA pattern of staining on HEp-2 and HeLa cells was detected by immunoblotting 2 constructs of the cDNA. The clinical features of patients with antibodies directed against HsEg5 was obtained by retrospective chart review.

Results. The antigen responsible for the MSA-35 pattern was identified as the human kinesin-like protein HsEg5. Seven of 51 sera (14%) that demonstrated an MSA pattern of staining reacted with recombinant HsEg5. Six of 7 of the HsEg5-positive patients (86%) had SLE, and 1 had Sjögren's syndrome. The indirect immunofluorescent staining pattern of sera that reacted with HsEg5 could be distinguished from the other sera that reacted with NuMA. In an unselected cohort of 52 SLE patients, 3 (6%) had autoantibodies reactive with the recombinant HsEg5.

Conclusion. Autoantibodies to MSA fall into 2 major classes: those reactive with NuMA and those reactive with HsEg5. Autoantibodies to HsEg5 are found in a lower frequency than NuMA in sera that demonstrate the MSA pattern of staining and appear to be specifically associated with SLE. HsEg5 can be distinguished from NuMA by indirect immunofluorescence and Western blotting.

Ancillary