SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Fairburn K, Stevens CR, Winyard PG, Kus M, Ward RJ, Cunningham J, et al. Oxidative stress and its control: a pathogenetic role in inflammatory joint disease. Biochem Soc Trans 1993; 2: 3715.
  • 2
    Tak PP, Zvaifler NJ, Green DR, Firestein GS. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today 2000; 21: 7882.
  • 3
    Maurice MM, Nakamura H, van der Voort EA, van Vliet AI, Staal FJ, Tak PP, et al. Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis. J Immunol 1997; 158: 145865.
  • 4
    Gringhuis SI, Leow A, Papendrecht-van der Voort EA, Remans PH, Breedveld FC, Verweij CL. Displacement of linker for activation of T cells from the plasma membrane due to redox balance alterations results in hyporesponsiveness of synovial fluid T lymphocytes in rheumatoid arthritis. J Immunol 2000; 164: 21709.
  • 5
    Gringhuis SI, Papendrecht-van der Voort EA, Leow A, Nivine Levarht EW, Breedveld FC, Verweij CL. Effect of redox balance alterations on cellular localization of LAT and downstream T-cell receptor signaling pathways. Mol Cell Biol 2002; 22: 40011.
  • 6
    Cope AP. Studies of T-cell activation in chronic inflammation. Arthritis Res 2002; 4 Suppl 3: S197211.
  • 7
    Bowie A, O'Neill LA. Oxidative stress and nuclear factor-κB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 2000; 59: 1323.
  • 8
    Babior BM. Phagocytes and oxidative stress. Am J Med 2000; 109: 3344.
  • 9
    Blake DR, Winyard PG, Marok R. The contribution of hypoxia-reperfusion injury to inflammatory synovitis: the influence of reactive oxygen intermediates on the transcriptional control of inflammation. Ann N Y Acad Sci 1994; 723: 30817.
  • 10
    Bauerova K, Bezek A. Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. Gen Physiol Biophys 1999; 18: 1520.
  • 11
    Remans PH, Gringhuis SI, van Laar JM, Sanders ME, Papendrecht-van der Voort EA, Zwartkruis FJ, et al. Rap1 signaling is required for suppression of Ras-generated reactive oxygen species and protection against oxidative stress in T lymphocytes. J Immunol 2004; 173: 92031.
  • 12
    Steinbeck MJ, Khan AU, Appel WH Jr, Karnovsky MJ. The DAB-Mn++ cytochemical method revisited: validation of specificity for superoxide [published erratum appears in J Histochem Cytochem 1994;42:127]. J Histochem Cytochem 1993; 41: 165967.
  • 13
    Frederiks WM, Bosch KS, van den Munckhof RJ. Extinction coefficient of polymerized diaminobenzidine complexed with cobalt as final reaction product of histochemical oxidase reactions. Histochem Cell Biol 1995; 104: 4737.
  • 14
    Kerver ED, Vogels IM, Bosch KS, Vreeling-Sindelarova H, van den Munckhof RJ, Frederiks WM. In situ detection of spontaneous superoxide anion and singlet oxygen production by mitochondria in rat liver and small intestine. Histochem J 1997; 29: 22937.
  • 15
    Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 4795.
  • 16
    Dannenberg AM Jr, Schofield BH, Rao JB, Dinh TT, Lee K, Boulay M, et al. Histochemical demonstration of hydrogen peroxide production by leukocytes in fixed-frozen tissue sections of inflammatory lesions. J Leukoc Biol 1994; 56: 43643.
  • 17
    Jackson SH, Devadas S, Kwon J, Pinto LA, Williams MS. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat Immunol 2004; 5: 81827.