• 1
    Abbott JD, Moreland LW. Rheumatoid arthritis: developing pharmacological therapies. Expert Opin Investig Drugs 2004; 13: 100718.
  • 2
    Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 1996; 93: 602530.
  • 3
    Neidhart M, Rethage J, Kuchen S, Kunzler P, Crowl RM, Billingham ME, et al. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum 2000; 43: 263447.
  • 4
    Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM. Expression profiling using cDNA microarrays. Nat Genet 1999; 21: 104.
  • 5
    Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. High density synthetic oligonucleotide arrays. Nat Genet 1999; 21: 204.
  • 6
    Shchepinov MS, Case-Green SC, Southern EM. Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. Nucleic Acids Res 1997; 25: 115561.
  • 7
    Guo Z, Guilfoyle RA, Thiel AJ, Wang R, Smith LM. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res 1994; 22: 545665.
  • 8
    Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 2001; 19: 3427.
  • 9
    Quackenbush J. Computational analysis of microarray data. Nat Rev Genet 2001; 2: 41827.
  • 10
    Firestein GS, Pisetsky DS. DNA microarrays: boundless technology or bound by technology? Guidelines for studies using microarray technology [editorial]. Arthritis Rheum 2002; 46: 85961.
  • 11
    Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001; 29: 36571.
  • 12
    Nadon R, Shoemaker J. Statistical issues with microarrays: processing and analysis. Trends Genet 2002; 18: 26571.
  • 13
    Wei C, Li J, Bumgarner RE. Sample size for detecting differentially expressed genes in microarray experiments. BMC Genomics 2004; 5: 87.
  • 14
    Pavlidis P, Li Q, Noble WS. The effect of replication on gene expression microarray experiments. Bioinformatics 2003; 19: 16207.
  • 15
    Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001; 98: 511621.
  • 16
    Pan W. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 2002; 18: 54654.
  • 17
    Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 2004; 573: 8392.
  • 18
    Crow MK, Wohlgemuth J. Microarray analysis of gene expression in lupus. Arthritis Res Ther 2003; 5: 27987.
  • 19
    Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 6874.
  • 20
    Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002; 415: 43642.
  • 21
    Dudoit S, Gentleman RC, Quackenbush J. Open source software for the analysis of microarray data. Biotechniques 2003; 34 Suppl: S4551.
  • 22
    Slonim DK. From patterns to pathways: gene expression data analysis comes of age. Nat Genet 2002; 32 Suppl: 5028.
  • 23
    Marton MJ, DeRisi JL, Bennett HA, Iyer VR, Meyer MR, Roberts CJ, et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat Med 1998; 4: 1293301.
  • 24
    Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, et al. Functional discovery via a compendium of expression profiles. Cell 2000; 102: 10926.
  • 25
    Weinstein JN, Myers TG, O'Connor PM, Friend SH, Fornace AJ Jr, Kohn KW, et al. An information-intensive approach to the molecular pharmacology of cancer. Science 1997; 275: 3439.
  • 26
    Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, et al. Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A 2001; 98: 1078792.
  • 27
    Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci U S A 2000; 97: 121826.
  • 28
    Fang X, Shao L, Zhang H, Wang S. Web-based tools for mining the NCI databases for anticancer drug discovery. J Chem Inf Comput Sci 2004; 44: 24957.
  • 29
    Cheok MH, Yang W, Pui CH, Downing JR, Cheng C, Naeve CW, et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet 2003; 34: 8590.
  • 30
    Van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 19992009.
  • 31
    Burczynski ME, Twine NC, Dukart G, Marshall B, Hidalgo M, Stadler WM, et al. Transcriptional profiles in peripheral blood mononuclear cells prognostic of clinical outcomes in patients with advanced renal cell carcinoma. Clin Cancer Res 2005; 11: 11819.
  • 32
    Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002; 8: 81624.
  • 33
    Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 193747.
  • 34
    Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 13343.
  • 35
    Van der Pouw Kraan TC, van Gaalen FA, Kasperkovitz PV, Verbeet NL, Smeets TJ, Kraan MC, et al. Rheumatoid arthritis is a heterogeneous disease: evidence for differences in the activation of the STAT-1 pathway between rheumatoid tissues. Arthritis Rheum 2003; 48: 213245.
  • 36
    Kasperkovitz PV, Timmer TC, Smeets TJ, Verbeet NL, Tak PP, van Baarsen LG, et al. Fibroblast-like synoviocytes derived from patients with rheumatoid arthritis show the imprint of synovial tissue heterogeneity: evidence of a link between an increased myofibroblast-like phenotype and high-inflammation synovitis. Arthritis Rheum 2005; 52: 43041.
  • 37
    Kurowska-Stolarska M, Distler J, Moritz W, Marti H, Gay RE, Maslinski W, et al. The expression of inhibitor of differentiation-2 (Id-2) is induced by hypoxia in synovial fibroblasts independently of HIF-1a [abstract]. Arthritis Rheum 2003; 48 Suppl 9: S146.
  • 38
    Pierer M, Rethage J, Seibl R, Lauener R, Brentano F, Wagner U, et al. Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. J Immunol 2004; 172: 125665.
  • 39
    Dawson J, Miltz W, Mir AK, Wiessner C. Targeting monocyte chemoattractant protein-1 signalling in disease. Expert Opin Ther Targets 2003; 7: 3548.
  • 40
    Jarvis JN, Dozmorov I, Jiang K, Frank MB, Szodoray P, Alex P, et al. Novel approaches to gene expression analysis of active polyarticular juvenile rheumatoid arthritis. Arthritis Res Ther 2004; 6: R1532.
  • 41
    Judex M, Neumann E, Gay S, Muller-Ladner U. Laser-mediated microdissection as a tool for molecular analysis in arthritis. Methods Mol Med 2004; 101: 93106.
  • 42
    Tak PP, Taylor PC, Breedveld FC, Smeets TJ, Daha MR, Kluin PM, et al. Decrease in cellularity and expression of adhesion molecules by anti–tumor necrosis factor α monoclonal antibody treatment in patients with rheumatoid arthritis. Arthritis Rheum 1996; 39: 107781.
  • 43
    Joosten LA, Helsen MM, van de Loo FA, van den Berg WB. Anticytokine treatment of established type II collagen–induced arthritis in DBA/1 mice: a comparative study using anti-TNFα, anti–IL-1α/β, and IL-1Ra. Arthritis Rheum 1996; 39: 797809.
  • 44
    Lubberts E, Joosten LA, van den Bersselaar L, Helsen MM, Bakker AC, Xing Z, et al. Intra-articular IL-10 gene transfer regulates the expression of collagen-induced arthritis (CIA) in the knee and ipsilateral paw. Clin Exp Immunol 2000; 120: 37583.
  • 45
    Neidhart M, Jungel A, Comazzi M, von Knoch R, Ospelt C, Simmen B, et al. Deficient expression of interleukin-10 receptor α-chain in rheumatoid arthritis synovium: limitation of inflammatory animal models [abstract]. Arthritis Rheum 2004; 50 Suppl 9: S112.
  • 46
    Aletaha D, Smolen JS. The rheumatoid arthritis patient in the clinic: comparing more than 1,300 consecutive DMARD courses. Rheumatology (Oxford) 2002; 41: 136774.
  • 47
    Bresnihan B, Cobby M. Clinical and radiological effects of anakinra in patients with rheumatoid arthritis. Rheumatology (Oxford) 2003; 42 Suppl 2: ii228.
  • 48
    Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, et al, and the ATTRACT Study Group. Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. Lancet 1999; 354: 19329.
  • 49
    Martinez A, Salido M, Bonilla G, Pascual-Salcedo D, Fernandez-Arquero M, de Miguel S, et al. Association of the major histocompatibility complex with response to infliximab therapy in rheumatoid arthritis patients. Arthritis Rheum 2004; 50: 107782.
  • 50
    O'Duffy JD, O'Fallon WM, Hunder GG, McDuffie FC, Moore SB. An attempt to predict the response to gold therapy in rheumatoid arthritis. Arthritis Rheum 1984; 27: 12107.
  • 51
    O'Dell JR, Nepom BS, Haire C, Gersuk VH, Gaur L, Moore GF, et al. HLA-DRB1 typing in rheumatoid arthritis: predicting response to specific treatments. Ann Rheum Dis 1998; 57: 20913.
  • 52
    Fries JF, Spitz P, Kraines RG, Holman HR. Measurement of patient outcome in arthritis. Arthritis Rheum 1980; 23: 13745.
  • 53
    Prevoo ML, van 't Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight–joint counts: development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 1995; 38: 448.
  • 54
    Van Vollenhoven RF, Klareskog L. Clinical responses to tumor necrosis factor α antagonists do not show a bimodal distribution: data from the Stockholm tumor necrosis factor α followup registry. Arthritis Rheum 2003; 48: 15003.
  • 55
    Qing X, Putterman C. Gene expression profiling in the study of the pathogenesis of systemic lupus erythematosus. Autoimmun Rev 2004; 3: 5059.
  • 56
    Ospelt C, Kurowska-Stolarska M, Neidhart M, Michel B, Simmen BR, Gay RE, et al. Licofelone, a cyclooxygenase/5-lipoxygenase inhibitor reduces expression of IP-10 in rheumatoid arthritis synovial fibroblasts [abstract]. Arthritis Rheum 2004; 50 Suppl 9: S570.
  • 57
    Smolen JS, Steiner G. Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov 2003; 2: 47388.
  • 58
    Hermann M, Camici G, Fratton A, Hurlimann D, Tanner FC, Hellermann JP, et al. Differential effects of selective cyclooxygenase-2 inhibitors on endothelial function in salt-induced hypertension. Circulation 2003; 108: 230811.
  • 59
    Pitt B, Pepine C, Willerson JT. Cyclooxygenase-2 inhibition and cardiovascular events. Circulation 2002; 106: 1679.
  • 60
    Niederberger E, Manderscheid C, Grosch S, Schmidt H, Ehnert C, Geisslinger G. Effects of the selective COX-2 inhibitors celecoxib and rofecoxib on human vascular cells. Biochem Pharmacol 2004; 68: 34150.
  • 61
    Haupl T, Krenn V, Stuhlmuller B, Radbruch A, Burmester GR. Perspectives and limitations of gene expression profiling in rheumatology: new molecular strategies. Arthritis Res Ther 2004; 6: 1406.
  • 62
    Burmester GR, Haupl T. Strategies using functional genomics in rheumatic diseases. Autoimmun Rev 2004; 3: 5419.
  • 63
    Pierer M, Muller-Ladner U, Pap T, Neidhart M, Gay RE, Gay S. The SCID mouse model: novel therapeutic targets: lessons from gene transfer. Springer Semin Immunopathol 2003; 25: 6578.