• 1
    LeRoy EC. Systemic sclerosis (scleroderma). In: WyngaardenJB, SmithLH, BennettJC, editors. Cecil textbook of medicine. 19th ed. Philadelphia: WB Saunders; 1992. p. 15305.
  • 2
    Korn JH. Immunologic aspects of scleroderma. Curr Opin Rheumatol 1989; 1: 47984.
  • 3
    LeRoy EC. Increased collagen synthesis by scleroderma skin fibroblasts in vitro: a possible defect in the regulation or activation of the scleroderma fibroblast. J Clin Invest 1974; 54: 8809.
  • 4
    Jelaska A, Arakawa M, Broketa G, Korn JH. Heterogeneity of collagen synthesis in normal and systemic sclerosis skin fibroblasts: increased proportion of high collagen–producing cells in systemic sclerosis fibroblasts. Arthritis Rheum 1996; 39: 133846.
  • 5
    LeRoy EC, Smith EA, Kahaleh MB, Trojanowska M, Silver RM. A strategy for determining the pathogenesis of systemic sclerosis: is transforming growth factor β the answer? Arthritis Rheum 1989; 32: 81725.
  • 6
    Kawakami T, Ihn H, Xu W, Smith E, LeRoy C, Trojanowska M. Increased expression of TGF-β receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-β signaling to scleroderma phenotype. J Invest Dermatol 1998; 110: 4751.
  • 7
    Ihn H, Yamane K, Kubo M, Tamaki K. Blockade of endogenous transforming growth factor β signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor β receptors. Arthritis Rheum 2001; 44: 47480.
  • 8
    Yamane K, Ihn H, Kubo M, Tamaki K. Increased transcriptional activities of transforming growth factor β receptors in scleroderma fibroblasts. Arthritis Rheum 2002; 46: 24218.
  • 9
    Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. Impaired Smad7-Smurf-mediated negative regulation of transforming growth factor (TGF)-β signaling in scleroderma fibroblasts. J Clin Invest 2004; 113: 25364.
  • 10
    Annes JP, Munger JS, Rifkin DB. Making sense of latent TGF-β activation. J Cell Sci 2003; 116: 21724.
  • 11
    Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, et al. The integrin αvβ6 binds and activates latent TGF-β1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999; 96: 31928.
  • 12
    Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 1998; 93: 115970.
  • 13
    Lyons RM, Gentry LE, Purchio AF, Moses HL. Mechanism of activation of latent recombinant transforming growth factor-β1 by plasmin. J Cell Biol 1990; 110: 13617.
  • 14
    Mu D, Cambier S, Fjellbirkeland L, Baron JL, Munger JS, Kawakatsu H, et al. The integrin αvβ8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1. J Cell Biol 2002; 157: 493507.
  • 15
    Munger JS, Harpel JG, Giancotti FG, Rifkin DB. Interactions between growth factors and integrins: latent forms of transforming growth factor-β are ligands for the integrin αvβ1. Mol Biol Cell 1998; 9: 262738.
  • 16
    Ludbrook SB, Barry ST, Delves CJ, Horgan CM. The integrin αvβ3 is a receptor for the latency-associated peptides of transforming growth factors β1 and β3. Biochem J 2003; 369: 3118.
  • 17
    Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. Increased expression levels of integrin αvβ5 on scleroderma fibroblasts. Am J Pathol 2004; 164: 127592.
  • 18
    Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, et al. C-myc is a downstream target of the Smad pathway. J Biol Chem 2002; 277: 85461.
  • 19
    Ihn H, Ohnishi K, Tamaki T, LeRoy EC, Trojanowska M. Transcriptional regulation of the human α2(I) collagen gene: combined action of upstream stimulatory and inhibitory cis-acting elements. J Biol Chem 1996; 271: 2671723.
  • 20
    Danielpour D. Improved sandwich enzyme-linked immunosorbent assays for transforming growth factor-β1. J Immunol Methods 1993; 158: 1725.
  • 21
    Smiths JW, Vestals DJ, Irwin SV, Burke TA, Cheresh DA. Purification and functional characterization of integrin αvβ5. J Biol Chem 1990; 265: 1100613.
  • 22
    Tu GC, Cao QN, Zhou F, Israel Y. Tetranucleotide GGGA motif in primary RNA transcripts: novel target site for antisense design. J Biol Chem 1998; 273: 2512531.
  • 23
    Schultz-Cherry S, Lawler J, Murphy-Ullrich JE. The type 1 repeats of thrombospondin 1 activate latent transforming growth factor-β. J Biol Chem 1994; 269: 267838.
  • 24
    Mc Mahon GA, Dignam JD, Gentry LE. Structural characterization of the latent complex between transforming growth factor-β1 and β1-latency-associated peptide. Biochem J 1996; 313: 34351.
  • 25
    Ylanne J. Conserved functions of the cytoplasmic domains of integrin β subunits. Front Biosci 1998; 3: 87786.
  • 26
    Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 1992; 359: 6939.
  • 27
    Denton CP, Zheng B, Evans LA, Shi-wen X, Ong VH, Fisher I, et al. Fibroblast-specific expression of a kinase-deficient type II transforming growth factor β (TGFβ) receptor leads to paradoxical activation of TGFβ signaling pathways with fibrosis in transgenic mice. J Biol Chem 2003; 278: 2510919.
  • 28
    Huang X, Griffiths M, Wu J, Farese RV Jr, Sheppard D. Normal development, wound healing, and adenovirus susceptibility in β5-deficient mice. Mol Cell Biol 2000; 20: 7559.