• 1
    Sims AM, Wordsworth BP, Brown MA. Genetic susceptibility to ankylosing spondylitis. Curr Mol Med 2004; 4: 1320.
  • 2
    Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β 2m: an animal model of HLA-B27-associated human disorders. Cell 1990; 63: 1099112.
  • 3
    Taurog JD, Maika SD, Satumtira N, Dorris ML, McLean IL, Yanagisawa H, et al. Inflammatory disease in HLA-B27 transgenic rats [review]. Immunol Rev 1999; 169: 20923.
  • 4
    May E, Dorris ML, Satumtira N, Iqbal I, Rehman MI, Lightfoot E, et al. CD8αβ T cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. J Immunol 2003; 170: 1099105.
  • 5
    Colbert RA. The immunobiology of HLA-B27: variations on a theme. Curr Mol Med 2004; 4: 2130.
  • 6
    Mear JP, Schreiber KL, Munz C, Zhu X, Stevanovic S, Rammensee HG, et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 1999; 163: 666570.
  • 7
    Dangoria NS, DeLay ML, Kingsbury DJ, Mear JP, Uchanska-Ziegler B, Ziegler A, et al. HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 2002; 277: 2345968.
  • 8
    Antoniou AN, Ford S, Taurog JD, Butcher GW, Powis SJ. Formation of HLA-B27 homodimers and their relationship to assembly kinetics. J Biol Chem 2004; 279: 8895902.
  • 9
    Tran TM, Satumtira N, Dorris ML, May E, Wang A, Furuta E, et al. HLA-B27 in transgenic rats forms disulfide-linked heavy chain oligomers and multimers that bind to the chaperone BiP. J Immunol 2004; 172: 51109.
  • 10
    Turner MJ, Sowders DP, DeLay ML, Mohapatra R, Bai S, Smith JA, et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol 2005; 175: 243848.
  • 11
    Schroder M, Kaufman RJ. The mammalian unfolded protein response [review]. Annu Rev Biochem 2005; 74: 73989.
  • 12
    Allen RL, O'Callaghan CA, McMichael AJ, Bowness P. HLA-B27 can form a novel β2-microglobulin-free heavy chain homodimer structure. J Immunol 1999; 162: 5045–-8.
  • 13
    Bird LA, Peh CA, Kollnberger S, Elliott T, McMichael AJ, Bowness P. Lymphoblastoid cells express HLA-B27 homodimers both intracellularly and at the cell surface following endosomal recycling. Eur J Immunol 2003; 33: 74859.
  • 14
    Kollnberger S, Bird L, Sun MY, Retiere C, Braud VM, McMichael A, et al. Cell surface expression and immune receptor recognition of HLA–B27 homodimers. Arthritis Rheum 2002; 46: 297282.
  • 15
    Tran TM, Dorris ML, Satumtira N, Richardson JA, Hammer RE, Shang J, et al. Additional human β2-microglobulin curbs HLA–B27 misfolding and promotes arthritis and spondylitis without colitis in male HLA–B27–transgenic rats. Arthritis Rheum 2006; 54: 131727.
  • 16
    Taurog JD, Maika SD, Simmons WA, Breban M, Hammer RE. Susceptibility to inflammatory disease in HLA-B27 transgenic rat lines correlates with the level of B27 expression. J Immunol 1993; 150: 416878.
  • 17
    Harding CV. Choosing and preparing antigen presenting cells. In: ColiganJE, BiererBE, MarguliesDH, ShevachEM, StroberW, editors. Current protocols in immunology. Hoboken (NJ): John Wiley & Sons; 2003. p. 16.1.8.
  • 18
    Barnstable CJ, Bodmer WF, Brown G, Galfre G, Milstein C, Williams AF, et al. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens: new tools for genetic analysis. Cell 1978; 14: 920.
  • 19
    Stam NJ, Spits H, Ploegh HL. Monoclonal antibodies raised against denatured HLA-B locus H-chains permit biochemical characterization of certain HLA-C locus products. J Immunol 1986; 137: 2299306.
  • 20
    Lutz PM, Cresswell P. An epitope common to HLA class I and class II antigens, Ig light chains, and β2-microglobulin. Immunogenetics 1987; 25: 22833.
  • 21
    Johnson DR. Locus-specific constitutive and cytokine-induced HLA class I gene expression. J Immunol 2003; 170: 1894902.
  • 22
    Molinari M, Galli C, Vanoni O, Arnold SM, Kaufman RJ. Persistent glycoprotein misfolding activates the glucosidase II/UGT1-driven calnexin cycle to delay aggregation and loss of folding competence. Mol Cell 2005; 20: 50312.
  • 23
    Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-α [review]. Annu Rev Immunol 1997; 15: 74995.
  • 24
    Lin W, Harding HP, Ron D, Popko B. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-γ. J Cell Biol 2005; 169: 60312.
  • 25
    Pirot P, Eizirik DL, Cardozo AK. Interferon-γ potentiates endoplasmic reticulum stress-induced death by reducing pancreatic beta cell defence mechanisms. Diabetologia 2006; 49: 122936.
  • 26
    Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, et al. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 2005; 54: 45261.
  • 27
    Miyata T, Hori O, Zhang J, Yan SD, Ferran L, Iida Y, et al. The receptor for advanced glycation end products (RAGE) is a central mediator of the interaction of AGE-β2 microglobulin with human mononuclear phagocytes via an oxidant-sensitive pathway: implications for the pathogenesis of dialysis-related amyloidosis. J Clin Invest 1996; 98: 108894.
  • 28
    Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 2001; 108: 94955.
  • 29
    Hou FF, Miyata T, Boyce J, Yuan Q, Chertow GM, Kay J, et al. β2-microglobulin modified with advanced glycation end products delays monocyte apoptosis. Kidney Int 2001; 59: 9901002.
  • 30
    Breban M, Hammer RE, Richardson JA, Taurog JD. Transfer of the inflammatory disease of HLA-B27 transgenic rats by bone marrow engraftment. J Exp Med 1993; 178: 160716.