• 1
    Artlett CM. Immunology of systemic sclerosis. Front Biosci 2005; 10: 170719.
  • 2
    Derk CT, Jimenez SA. Systemic sclerosis: current views of its pathogenesis. Autoimmun Rev 2003; 2: 18191.
  • 3
    Jimenez SA, Derk CT. Following the molecular pathways toward an understanding of the pathogenesis of systemic sclerosis. Ann Intern Med 2004; 140: 3750.
  • 4
    Tamby MC, Chanseaud Y, Guelliven L, Mouthon L. New insights into the pathogenesis of systemic sclerosis. Autoimmun Rev 2003; 2: 1527.
  • 5
    Postlethwaite AE, Shigemitsu H, Kanangat S. Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis. Curr Opin Rheumatol 2004; 16: 7338.
  • 6
    Kissin E, Korn JH. Apoptosis and myofibroblasts in the pathogenesis of systemic sclerosis. Curr Rheumatol Rep 2002; 4: 12935.
  • 7
    Kirk TZ, Mark ME, Chua CC, Chua BH, Mayes MD. Myofibroblasts from scleroderma skin synthesize elevated levels of collagen and tissue inhibitor of metalloproteinase (TIMP-1) with two forms of TIMP-1. J Biol Chem 1995; 270: 34238.
  • 8
    Denton CP, Abraham DJ. Transforming growth factor-β and connective tissue growth factor: key cytokines in scleroderma pathogenesis. Curr Opin Rheumatol 2001; 13: 50511.
  • 9
    Branton MH, Kopp JB. TGF-β and fibrosis. Microbes Infect 1999; 1: 134965.
  • 10
    Feghali CA, Wright TM. Identification of multiple, differentially expressed messenger RNAs in dermal fibroblasts from patients with systemic sclerosis. Arthritis Rheum 1999; 42: 14517.
  • 11
    Whitfield ML, Finlay DR, Murray JI, Troyanskaya OG, Chi JT, Pergamenschikov A, et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A 2003; 100: 1231924.
  • 12
    Strehlow D, Jelaska A, Strehlow K, Korn JH. A potential role for protease nexin 1 overexpression in the pathogenesis of scleroderma. J Clin Invest 1999; 103: 117990.
  • 13
    Zhou X, Tan FK, Xiong M, Milewicz DM, Feghali CA, Fritzler MJ, et al. Systemic sclerosis (scleroderma): specific autoantigen genes are selectively overexpressed in scleroderma fibroblasts. J Immunol 2001; 167: 712633.
  • 14
    Bou-Gharios G, Garrett LA, Rossert L, Niederreither K, Eberspacher H, Smith C, et al. A potent far-upstream enhancer in the mouse pro α 2(I) collagen gene regulates expression of reporter genes in transgenic mice. J Cell Biol 1996; 134: 133344.
  • 15
    Weiser R, Wrana JL, Massague J. GS domain mutations that constitutively activate T-β R-1, the downstream signaling component in the TGF-β receptor complex. EMBO J 1995; 14: 2199208.
  • 16
    Soriano P. Generalized LacZ expression with ROSA26 Cre reporter strain. Nat Genet 1999; 21: 701.
  • 17
    Denton CP, Zheng B, Evans LA, Shi-Wen X, Ong VH, Fisher I, et al. Fibroblast-specific expression of a kinase-deficient type II transforming growth factor β (TGF-β) receptor leads to paradoxical activation of TGF-β signaling pathways with fibrosis in transgenic mice. J Biol Chem 2003; 278: 2510919.
  • 18
    Abe M, Harpel JG, Metz CN, Nunes I, Loskutoff DJ, Rifkin DB. An assay for transforming growth factor-β using cells transfected with plasminogen activator inhibitor-1 promoter-luciferase construct. Anal Biochem 1994; 216: 27684.
  • 19
    Chipuk JE, Cornelius SC, Pultz NJ, Jorgensen JS, Bonham MJ, Kim SJ, et al. The androgen receptor represses transforming growth factor-β signaling through interaction with Smad 3. J Biol Chem 2002; 227: 12408.
  • 20
    Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 1997; 237: 7527.
  • 21
    Zheng B, Zhang Z, Black CM, de Crombrugghe B, Denton CP. Ligand-dependent genetic recombination in fibroblasts: a potentially powerful technique for investigating gene function in fibrosis. Am J Pathol 2002; 160: 160917.
  • 22
    Ames PR, Lupoli S, Alves J, Atsumi T, Edwards C, Iannaccone L, et al. The coagulation/fibrinolysis balance in systemic sclerosis: evidence for a haematological stress syndrome. Br J Rheumatol 1997; 36: 104550.
  • 23
    Blann AD, Sheran TP, Emery P. Von Willebrand factor: increased levels are related to poor prognosis in systemic sclerosis and not to tissue autoantibodies. Br J Biomed Sci 1997; 54: 59.
  • 24
    Marzano AV, Federici AB, Gasparini G, Mannucci PM, Caputo R, Berti E. Coagulation factor XIII, endothelial damage and systemic sclerosis. Eur J Dermatol 2002; 10: 147.
  • 25
    Reinders JH, de Groot PG, Sixma JJ, von Mourik JA. Storage and secretion of von Willebrand factor by endothelial cells. Haemostasis 1988; 1: 24661.
  • 26
    Leask A. Transcriptional profiling of the scleroderma fibroblast reveals a potential role for connective tissue growth factor (CTGF) in pathological fibrosis. Keio J Med 2004; 53: 747.
  • 27
    Leask A, Abraham DJ. TGF-β signaling and the fibrotic response. FASEB J 2004; 18: 81627.
  • 28
    Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KJ, Iozzo RV. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 1997: 136: 72943.
  • 29
    Hayashi H, Abdollah S, Qui Y, Cai J, Xu YY, Grinnell BW, et al. The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 1997; 89: 116573.
  • 30
    Shi Y, Massague J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 2003; 113: 685700.
  • 31
    Chen Y, Shi-Wen X, van Beek J, Kennedy L, McLeod M, Renzoni EA, et al. Matrix contraction by dermal fibroblasts requires transforming growth factor-β/activin-linked kinase 5, heparan sulfate-containing proteoglycans, and MEK/ERK: insights into pathological scarring in chronic fibrotic disease. Am J Pathol 2005; 6: 1699711.
  • 32
    Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 2003; 81: 35563.
  • 33
    Frazier K, Williams S, Kothapalli D, Klapper H, Grotendorst GR. Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 1996; 107: 40411.
  • 34
    Young-Min SA, Beeton C, Laughton R, Plumpton T, Bartram S, Murphy G, et al. Serum TIMP-1, TIMP-2, and MMP-1 in patients with systemic sclerosis, primary Raynaud's phenomenon, and in normal controls. Ann Rheum Dis 2001; 60: 84651.
  • 35
    Toubi E, Kessel A, Grushko G, Sabo E, Rozenbaum M, Rosner I. The association of serum matrix metalloproteinases and their tissue inhibitor levels with scleroderma disease severity. Clin Exp Rheumatol 2002; 20: 2214.
  • 36
    Green MC, Sweet HO, Bunker LE. Tight skin, a new mutation of the mouse causing excessive growth of connective tissue and skeleton. Am J Pathol 1976; 82: 493512.
  • 37
    Siracusa LD, McGrath R, Ma Q, Moskow JJ, Manne J, Christner PJ, et al. A tandem duplication within the fibrillin I gene is associated with the mouse tight skin mutation. Genome Res 1996; 6: 30013.
  • 38
    Christner PJ, Peters J, Hawkins D, Siracusa LD, Jimenez SA. The tight skin 2 mouse: an animal model of scleroderma displaying cutaneous fibrosis and mononuclear cell infiltration. Arthritis Rheum 1995; 38: 17918.
  • 39
    Yamamoto T, Takagawa S, Katayama I, Yamazaki K, Hamazaki Y, Shinkai H, et al. Animal model of sclerotic skin. I. Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol 1999; 112: 45662.
  • 40
    Zhang Y, McCormick LL, Desai SR, Wu C, Gilliam AC. Murine sclerodermatous graft-versus-host-disease, a model for human scleroderma: cutaneous cytokines, chemokines, and immune cell activation. J Immunol 2002; 168: 308898.
  • 41
    Baxter RM, Crowell TP, McCrann ME, Frew EM, Gardner H. Analysis of the tight skin (Tsk1/+) mouse as a model for testing antifibrotic agents. Lab Invest 2005; 85: 1199209.