SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Pastoureau P, Chomel AC, Bonnet J. Evidence of early subchondral bone changes in the meniscectomized guinea pig: a densitometric study using dual-energy X-ray absorptiometry subregional analysis. Osteoarthritis Cartilage 1999; 7: 46673.
  • 2
    Yamada K, Healey R, Amiel D, Lotz M, Coutts R. Subchondral bone of the human knee joint in aging and osteoarthritis. Osteoarthritis Cartilage 2002; 10: 3609.
  • 3
    Karvonen RL, Miller PR, Nelson DA, Granda JL, Fernandez-Madrid F. Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol 1998; 25: 218794.
  • 4
    Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 1997; 12: 64151.
  • 5
    Bettica P, Cline G, Hart DJ, Meyer J, Spector TD. Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum 2002; 46: 317884.
  • 6
    Dieppe P, Cushnaghan J, Young P, Kirwan J. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis 1993; 2: 55763.
  • 7
    Huebner JL, Hanes MA, Beekman B, TeKoppele JM, Kraus VB. A comparative analysis of bone and cartilage metabolism in two strains of guinea-pig with varying degrees of naturally occurring osteoarthritis. Osteoarthritis Cartilage 2002; 10: 75867.
  • 8
    Carbone LD, Nevitt MC, Wildy K, Barrow KD, Harris F, Felson D, et al, for the Health, Aging and Body Composition Study. The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis. Arthritis Rheum 2004; 50: 351625.
  • 9
    Doschak MR, Wohl GR, Hanley DA, Bray RC, Zernicke RF. Antiresorptive therapy conserves some periarticular bone and ligament mechanical properties after anterior cruciate ligament disruption in the rabbit knee. J Orthop Res 2004; 22: 9428.
  • 10
    Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 2004; 50: 1193206.
  • 11
    Lehmann HJ, Mouritzen U, Christgau S, Cloos PA, Christiansen C. Effect of bisphosphonates on cartilage turnover assessed with a newly developed assay for collagen type II degradation products. Ann Rheum Dis 2002; 61: 5303.
  • 12
    Meyer JM, Dansereau SM, Farmer RW, Jeans GL, Prenger MC. Bisphosphonates structurally similar to risedronate (Actonel) slow disease progression in the guinea pig model of primary osteoarthritis [abstract]. Arthritis Rheum 2001; 44 Suppl 9: S307.
  • 13
    Muehleman C, Green J, Williams JM, Kuettner KE, Thonar EJ, Sumner DR. The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage. Osteoarthritis Cartilage 2002; 20: 22633.
  • 14
    Myers SL, Brandt KD, Burr DB, O'Connor BL, Albrecht M. Effects of bisphosphonate on bone histomorphometry and dynamics in the canine cruciate deficiency model of osteoarthritis. J Rheumatol 1999; 26: 264553.
  • 15
    Burr DB. The importance of subchondral bone in the progression of osteoarthritis. J Rheumatol Suppl 2004; 31: 7780.
  • 16
    Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 1986;(213): 3440.
  • 17
    Pugh J, Rose RM, Radin EL. A structural model for the mechanical behavior of trabecular bone. J Biomech 1973; 6: 65770.
  • 18
    Serink MT, Nachemson A, Hansson G. The effect of impact loading on rabbit knee joints. Acta Orthop Scand 1977; 48: 25062.
  • 19
    Mankin HJ, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hip. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 1971; 53: 52337.
  • 20
    De Bri E, Reinholt FP, Svensson O. Primary osteoarthritis in guinea pigs: a stereological study. J Orthop Res 1995; 13: 76976.
  • 21
    Pastoureau P, Leduc S, Chomel A, Ceuninck FD. Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized guinea pig model of osteoarthritis. Osteoarthritis Cartilage 2003; 11: 41223.
  • 22
    Ding M, Odgaard A, Danielsen CC, Hvid I. Mutual associations among microstructural physical and mechanical properties of human cancellous bone. J Bone Joint Surg Br 2002; 84: 9007.
  • 23
    Ding M, Odgaard A, Hvid I. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br 2003; 85: 90612.
  • 24
    Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 1992; 13: 32730.
  • 25
    Ota T, Harada Y, Yamada N, Takagi H, Azuma Y, Komoriya K. Three dimensional analysis of bone structure by microfocus X-ray computed tomography. J Jpn Soc Bone Morphom 1999; 9: 97101. In Japanese.
  • 26
    Bendele AM, Hulman JF. Effects of body weight restriction on the development and progression of spontaneous osteoarthritis in guinea pigs. Arthritis Rheum 1991; 34: 11804.
  • 27
    Bendele AM, Hulman JF. Spontaneous cartilage degeneration in guinea pigs. Arthritis Rheum 1988; 31: 5615.
  • 28
    Brismar BH, Lei W, Hjerpe A, Svensson O. The effect of body mass and physical activity on the development of guinea pig osteoarthrosis. Acta Orthop Scand 2003; 74: 4428.
  • 29
    Ding M, Danielsen CC, Hvid I. Effect of hyaluronan on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. Bone 2005; 36: 489501.
  • 30
    Sato M, Wada M, Miyoshi N, Imamura Y, Noriki S, Uchida K, et al. Hydroxyapatite maturity in the calcified cartilage and underlying subchondral bone of guinea pigs with spontaneous osteoarthritis: analysis by Fourier transform infrared microspectroscopy. Acta Histochem Cytochem 2004; 37: 1017.
  • 31
    Anderson-Mackenzie JM, Quasnichka HL, Starr RL, Lewis EJ, Billingham ME, Bailey AJ. Fundamental subchondral bone changes in spontaneous knee osteoarthritis. Int J Biochem Cell Biol 2005; 37: 22436.
  • 32
    Tokuda M. Histological study of spontaneous osteoarthritis in the knee joint of guinea pigs. J Orthop Sci 1997; 2: 24858.
  • 33
    Silverstein E, Sokoloff L. Natural history of degenerative joint disease in small laboratory animals. 5. Osteoarthritis in guinea pigs. Arthritis Rheum 1958; 1: 826.
  • 34
    Botter SM, van Osch GJ, Waarsing JH, Day JS, Verhaar JA, Pols HA, et al. Quantification of subchondral bone changes in a murine osteoarthritis model using micro-CT. Biorheology 2006; 43: 37988.
  • 35
    Bowles SA, Kurdy N, Davis AM, France MW. Changes in serum bone-specific alkaline phosphatase following tibial fracture. Ann Clin Biochem 1997; 34: 6901.
  • 36
    Ingle BM, Hay SM, Bottjer HM, Eastell R. Changes in bone mass and bone turnover following distal forearm fracture. Osteoporos Int 1999; 10: 399407.
  • 37
    Lauritzen JB, Hyldstrup L, McNair P, et al. The time course for stabilization of non-invasive indices after proximal humeral and distal radial fractures in postmenopausal women: Hvidovre Osteoporosis Study. In: ChristiansenC, JohansenJS, RiisBJ, editors. Osteoporosis 1987. Copenhagen: Osteo Press ApS; 1987.
  • 38
    Leung KS, Fung KP, Sher AH, Li CK, Lee KM. Plasma bone-specific alkaline phosphatase as an indicator of osteoblastic activity. J Bone Joint Surg Br 1993; 75: 28892.
  • 39
    Mallmin H, Ljunghall S, Larsson K. Biochemical markers of bone metabolism in patients with fracture of the distal forearm. Clin Orthop Relat Res 1993;(295): 25963.
  • 40
    Nymman MT, Paavolainen P, Forsuis S, Lamberg-Allardt C. Clinical evaluation of fracture healing by serum osteocalcin and alkaline phosphatase. Ann Chir Gynaecol 1991; 80: 28993.
  • 41
    Cameron HU, Fornasier VL. Trabecular stress fractures. Clin Orthop Relat Res 1975;(111): 2668.
  • 42
    Ivaska KK, Hentunen TA, Vaaraniemi J, Ylipahkala H, Pettersson K, Vaananen HK. Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem 2004; 279: 183619.
  • 43
    Sowers M, Lachance L, Jamadar D, Hochberg MC, Hollis B, Crutchfield M, et al. The associations of bone mineral density and bone turnover markers with osteoarthritis of the hand and knee in pre- and perimenopausal women. Arthritis Rheum 1999; 42: 4839.
  • 44
    Garnero P, Piperno M, Gineyts E, Christgau S, Delmas PD, Vignon E. Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann Rheum Dis 2001; 60: 61926.