• 1
    Parel Y, Chizzolini C. CD4+ CD8+ double positive (DP) T cells in health and disease. Autoimmun Rev 2004; 3: 21520.
  • 2
    Moebius U, Kober G, Griscelli AL, Hercend T, Meuer SC. Expression of different CD8 isoforms on distinct human lymphocyte subpopulations. Eur J Immunol 1991; 21: 1793800.
  • 3
    Jarry A, Cerf-Bensussan N, Brousse N, Selz F, Guy-Grand D. Subsets of CD3+ (T cell receptor α/β or γ/δ) and CD3− lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur J Immunol 1990; 20: 1097103.
  • 4
    Paliard X, Malefijt RW, de Vries JE, Spits H. Interleukin-4 mediates CD8 induction on human CD4+ T-cell clones. Nature 1988; 335: 6424.
  • 5
    Brod SA, Purvee M, Benjamin D, Hafler DA. Frequency analysis of CD4+CD8+ T cells cloned with IL-4. Cell Immunol 1990; 125: 42636.
  • 6
    Hori T, Paliard X, de Waal Malefijt R, Ranes M, Spits H. Comparative analysis of CD8 expressed on mature CD4+ CD8+ T cell clones cultured with IL-4 and that on CD8+ T cell clones: implication for functional significance of CD8 β. Int Immunol 1991; 3: 73741.
  • 7
    Colombatti A, Doliana R, Schiappacassi M, Argentini C, Tonutti E, Feruglio C, et al. Age-related persistent clonal expansions of CD28 cells: phenotypic and molecular TCR analysis reveals both CD4+ and CD4+CD8+ cells with identical CDR3 sequences. Clin Immunol Immunopathol 1998; 89: 6170.
  • 8
    Weiss L, Roux A, Garcia S, Demouchy C, Haeffner-Cavaillon N, Kazatchkine MD, et al. Persistent expansion, in a human immunodeficiency virus-infected person, of V β-restricted CD4+CD8+ T lymphocytes that express cytotoxicity-associated molecules and are committed to produce interferon-γ and tumor necrosis factor-α. J Infect Dis 1998; 178: 115862.
  • 9
    Sullivan YB, Landay AL, Zack JA, Kitchen SG, Al-Harthi L. Upregulation of CD4 on CD8+ T cells: CD4dimCD8bright T cells constitute an activated phenotype of CD8+ T cells. Immunology 2001; 103: 27080.
  • 10
    Munschauer FE, Stewart C, Jacobs L, Kaba S, Ghorishi Z, Greenberg SJ, et al. Circulating CD3+ CD4+ CD8+ T lymphocytes in multiple sclerosis. J Clin Immunol 1993; 13: 1138.
  • 11
    Bang K, Lund M, Wu K, Mogensen SC, Thestrup-Pedersen K. CD4+ CD8+ (thymocyte-like) T lymphocytes present in blood and skin from patients with atopic dermatitis suggest immune dysregulation. Br J Dermatol 2001; 144: 11407.
  • 12
    Fleischmajer R, Perlish JS, Reeves JR. Cellular infiltrates in scleroderma skin. Arthritis Rheum 1977; 20: 97584.
  • 13
    Roumm AD, Whiteside TL, Medsger TA Jr, Rodnan GP. Lymphocytes in the skin of patients with progressive systemic sclerosis: quantification, subtyping, and clinical correlations. Arthritis Rheum 1984; 27: 64553.
  • 14
    Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol 1992; 166: 25563.
  • 15
    Kahari VM, Sandberg M, Kalimo H, Vuorio T, Vuorio E. Identification of fibroblasts responsible for increased collagen production in localized scleroderma by in situ hybridization. J Invest Dermatol 1988; 90: 66470.
  • 16
    Scharffetter K, Kulozik M, Stolz W, Lankat-Buttgereit B, Hatamochi A, Sohnchen R, et al. Localization of collagen α 1(I) gene expression during wound healing by in situ hybridization. J Invest Dermatol 1989; 93: 40512.
  • 17
    Scharffetter K, Lankat-Buttgereit B, Krieg T. Localization of collagen mRNA in normal and scleroderma skin by in-situ hybridization. Eur J Clin Invest 1988; 18: 917.
  • 18
    Postlethwaite AE, Holness MA, Katai H, Raghow R. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J Clin Invest 1992; 90: 147985.
  • 19
    Salmon-Ehr V, Serpier H, Nawrocki B, Gillery P, Clavel C, Kalis B, et al. Expression of interleukin-4 in scleroderma skin specimens and scleroderma fibroblast cultures: potential role in fibrosis. Arch Dermatol 1996; 132: 8026.
  • 20
    Oriente A, Fedarko NS, Pacocha SE, Huang SK, Lichtenstein LM, Essayan DM. Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. J Pharmacol Exp Ther 2000; 292: 98894.
  • 21
    Chizzolini C. T lymphocyte and fibroblast interactions: the case of skin involvement in systemic sclerosis and other examples. Springer Semin Immunopathol 1999; 21: 43150.
  • 22
    Chizzolini C, Rezzonico R, Ribbens C, Burger D, Wollheim FA, Dayer JM. Inhibition of type I collagen production by dermal fibroblasts upon contact with activated T cells: different sensitivity to inhibition between systemic sclerosis and control fibroblasts. Arthritis Rheum 1998; 41: 203947.
  • 23
    Rezzonico R, Burger D, Dayer JM. Direct contact between T lymphocytes and human dermal fibroblasts or synoviocytes down-regulates types I and III collagen production via cell-associated cytokines. J Biol Chem 1998; 273: 187208.
  • 24
    Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β1. J Exp Med 2001; 194: 80921.
  • 25
    Chizzolini C, Parel Y, De Luca C, Tyndall A, Akesson A, Scheja A, et al. Systemic sclerosis Th2 cells inhibit collagen production by dermal fibroblasts via membrane-associated tumor necrosis factor α. Arthritis Rheum 2003; 48: 2593604.
  • 26
    Subcommittee for Scleroderma Criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum 1980; 23: 58190.
  • 27
    LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 1988; 15: 2025.
  • 28
    Chizzolini C, Chicheportiche R, Burger D, Dayer JM. Human Th1 cells preferentially induce interleukin (IL)-1β while Th2 cells induce IL-1 receptor antagonist production upon cell/cell contact with monocytes. Eur J Immunol 1997; 27: 1717.
  • 29
    Rogge L, Barberis-Maino L, Biffi M, Passini N, Presky DH, Gubler U, et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med 1997; 185: 82531.
  • 30
    Suzuki H. Analysis of CD4/CD8 lineage commitment by pronase treatment and reexpression assay. Methods Mol Biol 2000; 134: 638.
  • 31
    Rumke HC, Terpstra FG, Huis B, Out TA, Zeijlemaker WP. Immunoglobulin production in human mixed lymphocyte cultures: implications for co-cultures of cells from patients and healthy donors. J Immunol 1982; 128: 696701.
  • 32
    Kabelitz D, Brucker C, Wagner H, Fleischer B. A previously unrecognized large fraction of cytotoxic lymphocyte precursors is present in CD4+ human peripheral blood T cells. Cell Immunol 1989; 118: 28597.
  • 33
    Trinchieri G. Biology of natural killer cells. Adv Immunol 1989; 47: 187376.
  • 34
    Bigouret V, Hoffmann T, Arlettaz L, Villard J, Colonna M, Ticheli A, et al. Monoclonal T-cell expansions in asymptomatic individuals and in patients with large granular leukemia consist of cytotoxic effector T cells expressing the activating CD94:NKG2C/E and NKD2D killer cell receptors. Blood 2003; 101: 3198204.
  • 35
    Dumont-Girard F, Roux E, van Lier RA, Hale G, Helg C, Chapuis B, et al. Reconstitution of the T-cell compartment after bone marrow transplantation: restoration of the repertoire by thymic emigrants. Blood 1998; 92: 446471.
  • 36
    Aurrand-Lions M, Johnson-Leger C, Wong C, Du Pasquier L, Imhof BA. Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood 2001; 98: 3699707.
  • 37
    Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42: 12130.
  • 38
    Rabinowitz R, Hadar R, Schlesinger M. The appearance of the CD4+CD8+ phenotype on activated T cells: possible role of antigen transfer. Hum Immunol 1997; 55: 110.
  • 39
    Mavalia C, Scaletti C, Romagnani P, Carossino AM, Pignone A, Emmi L, et al. Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis. Am J Pathol 1997; 151: 17518.
  • 40
    Atamas SP, Yurovsky VV, Wise R, Wigley FM, Goter Robinson CJ, Henry P, et al. Production of type 2 cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis. Arthritis Rheum 1999; 42: 116878.
  • 41
    Luzina IG, Atamas SP, Wise R, Wigley FM, Choi J, Xiao HQ, et al. Occurrence of an activated, profibrotic pattern of gene expression in lung CD8+ T cells from scleroderma patients. Arthritis Rheum 2003; 48: 226274.
  • 42
    Gruschwitz MS, Vieth G. Up-regulation of class II major histocompatibility complex and intercellular adhesion molecule 1 expression on scleroderma fibroblasts and endothelial cells by interferon-γ and tumor necrosis factor α in the early disease stage. Arthritis Rheum 1997; 40: 54050.
  • 43
    Sakkas LI, Xu B, Artlett CM, Lu S, Jimenez SA, Platsoucas CD. Oligoclonal T cell expansion in the skin of patients with systemic sclerosis. J Immunol 2002; 168: 364959.
  • 44
    Spetz AL, Strominger J, Groh-Spies V. T cell subsets in normal human epidermis. Am J Pathol 1996; 149: 66574.
  • 45
    Clark RA, Chong BF, Mirchandani N, Yamanaka K, Murphy GF, Dowgiert RK, et al. A novel method for the isolation of skin resident T cells from normal and diseased human skin. J Invest Dermatol 2006; 126: 105970.
  • 46
    Nagaraju K, Cox A, Casciola-Rosen L, Rosen A. Novel fragments of the Sjögren's syndrome autoantigens α-fodrin and type 3 muscarinic acetylcholine receptor generated during cytotoxic lymphocyte granule–induced cell death. Arthritis Rheum 2001; 44: 237686.
  • 47
    Schachna L, Wigley FM, Morris S, Gelber AC, Rosen A, Casciola-Rosen L. Recognition of granzyme B–generated autoantigen fragments in scleroderma patients with ischemic digital loss. Arthritis Rheum 2002; 46: 187384.