SEARCH

SEARCH BY CITATION

Abstract

Objective

Achieving remission is the aim of treatment in rheumatoid arthritis (RA). This should represent minimal arthritis activity and ensure optimal disease outcome. However, we have previously demonstrated a high prevalence of imaging-detected synovial inflammation in RA patients who were in clinical remission. The purpose of this study was to evaluate the long-term significance of subclinical synovitis and its relationship to structural outcome.

Methods

We studied 102 RA patients receiving conventional treatment who had been judged by their consultant rheumatologist to be in remission, as well as 17 normal control subjects. Subjects underwent clinical, laboratory, functional, and quality of life assessments over 12 months. In addition to standard radiography of the hands and feet, imaging of the hands and wrists was performed with musculoskeletal ultrasonography (US) and conventional 1.5T magnetic resonance imaging (MRI) at baseline and 12 months, using validated acquisition and scoring techniques.

Results

Despite their being in clinical remission, 19% of the patients displayed deterioration in radiographic joint damage over the study period. Scores on musculoskeletal US synovial hypertrophy, power Doppler (PD), and MRI synovitis assessments in individual joints at baseline were significantly associated with progressive radiographic damage (P = 0.032, P < 0.001, and P = 0.002, respectively). Furthermore, there was a significant association between the musculoskeletal US PD score at baseline and structural progression over 12 months in totally asymptomatic metacarpophalangeal joints (P = 0.004) and 12 times higher odds of deterioration in joints with increased PD signal (odds ratio 12.21, P < 0.001).

Conclusion

Subclinical joint inflammation detected by imaging techniques explains the structural deterioration in RA patients in clinical remission who are receiving conventional therapy. Our findings reinforce the utility of imaging for the accurate evaluation of disease status and the prediction of structural outcome.