• 1
    Ryan LM, McCarthy DJ. Calcium pyrophosphate crystal deposition disease, pseudogout and articular chondrocalcinosis. In: KoopmanWJ, editor. Arthritis and allied conditions: a textbook of rheumatology. 13th ed. Baltimore: Williams & Wilkins; 1997. p. 21035.
  • 2
    Derfus BA, Kurian JB, Butler JJ, Daft LJ, Carrera GF, Ryan LM, et al. The high prevalence of pathologic calcium crystals in preoperative knees. J Rheumatol 2002; 29: 5704.
  • 3
    Halverson PB, McCarty DJ. Patterns of radiographic abnormalities associated with basic calcium phosphate and calcium pyrophosphate dihydrate crystal deposition in the knee. Ann Rheum Dis 1986; 45: 6035.
  • 4
    Nalbant S, Martinez JA, Kitumnuaypong T, Clayburne G, Sieck M, Schumacher HR Jr. Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthritis Cartilage 2003; 11: 504.
  • 5
    Boivin G, Lagier R. An ultrastructural study of articular chondrocalcinosis in cases of knee osteoarthritis. Virchows Arch A Pathol Anat Histopathol 1983; 400: 1329.
  • 6
    Sokoloff L, Varma AA. Chondrocalcinosis in surgically resected joints. Arthritis Rheum 1988; 31: 7506.
  • 7
    Abreu M, Johnson K, Chung CB, de Lima JE Jr, Trudell D, Terkeltaub R, et al. Calcification in calcium pyrophosphate dihydrate (CPPD) crystalline deposits in the knee: anatomic, radiographic, MR imaging, and histologic study in cadavers. Skeletal Radiol 2004; 33: 3928.
  • 8
    Mitrovic DR, Stankovic A, Iriarte-Borda O, Uzan M, Quintero M, Miravet L, et al. The prevalence of chondrocalcinosis in the human knee joint: an autopsy survey. J Rheumatol 1988; 15: 63341.
  • 9
    Ishikawa K, Masuda I, Ohira T, Yokoyama M. A histological study of calcium pyrophosphate dihydrate crystal-deposition disease. J Bone Joint Surg Am 1989; 71: 87586.
  • 10
    Mitsuyama H, Healey RM, Terkeltaub RA, Coutts RD, Amiel D. Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis. Osteoarthritis Cartilage 2007; 15: 55965.
  • 11
    Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423: 3326.
  • 12
    Binette F, McQuaid DP, Haudenschild DR, Yaeger PC, McPherson JM, Tubo R. Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro. J Orthop Res 1998; 16: 20716.
  • 13
    Von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Gluckert K, et al. Type X collagen synthesis in human osteoarthritic cartilage: indication of chondrocyte hypertrophy. Arthritis Rheum 1992; 35: 80611.
  • 14
    Kirsch T, Nah HD, Shapiro IM, Pacifici M. Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes. J Cell Biol 1997; 137: 114960.
  • 15
    Johnson KA, van Etten D, Nanda N, Graham RM, Terkeltaub RA. Distinct transglutaminase 2-independent and transglutaminase 2-dependent pathways mediate articular chondrocyte hypertrophy. J Biol Chem 2003; 278: 1882432.
  • 16
    Johnson KA, Rose DM, Terkeltaub RA. Factor XIIIA mobilizes transglutaminase 2 to induce chondrocyte hypertrophic differentiation. J Cell Sci 2008; 121(Pt 13): 225664.
  • 17
    Thouverey C, Bechkoff G, Pikula S, Buchet R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage 2009; 17: 6472.
  • 18
    Derfus B, Kranendonk S, Camacho N, Mandel N, Kushnaryov V, Lynch K, et al. Human osteoarthritic cartilage matrix vesicles generate both calcium pyrophosphate dihydrate and apatite in vitro. Calcif Tissue Int 1998; 63: 25862.
  • 19
    Derfus BA, Kurtin SM, Camacho NP, Kurup I, Ryan LM. Comparison of matrix vesicles derived from normal and osteoarthritic human articular cartilage. Connect Tissue Res 1996; 35: 33742.
  • 20
    Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957; 16: 494502.
  • 21
    Ranawat CS, Insall J, Shine J. Duo-condylar knee arthroplasty: Hospital for Special Surgery design. Clin Orthop Relat Res 1976; 120: 7682.
  • 22
    Mankin HJ, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 1971; 53: 52337.
  • 23
    Ostergaard K, Andersen CB, Petersen J, Bendtzen K, Salter DM. Validity of histopathological grading of articular cartilage from osteoarthritic knee joints. Ann Rheum Dis 1999; 58: 20813.
  • 24
    Pritzker KP, Cheng PT, Grynpas MD, Holmyard DP. Crystal associated diseases: role of scanning electron microscopy in diagnosis. Scanning Microsc 1988; 2: 14718.
  • 25
    Yavorskyy A, Hernandez-Santana A, McCarthy G, McMahon G. Detection of calcium phosphate crystals in the joint fluid of patients with osteoarthritis: analytical approaches and challenges. Analyst 2008; 133: 30218.
  • 26
    Cheung HS, Kurup IV, Sallis JD, Ryan LM. Inhibition of calcium pyrophosphate dihydrate crystal formation in articular cartilage vesicles and cartilage by phosphocitrate. J Biol Chem 1996; 271: 280825.
  • 27
    Russell RG, Rogers MJ. Bisphosphonates: from the laboratory to the clinic and back again. Bone 1999; 25: 97106.
  • 28
    Williams CJ, Zhang Y, Timms A, Bonavita G, Caeiro F, Broxholme J, et al. Autosomal dominant familial calcium pyrophosphate dihydrate deposition disease is caused by mutation in the transmembrane protein ANKH. Am J Hum Genet 2002; 71: 98591.