Inflammatory arthritis in caspase 1 gene–deficient mice: Contribution of proteinase 3 to caspase 1–independent production of bioactive interleukin-1β




Caspase 1, a known cysteine protease, is a critical component of the inflammasome. Both caspase 1 and neutrophil serine proteases such as proteinase 3 (PR3) can process pro–interleukin-1β (proIL-1β), a crucial cytokine linked to the pathogenesis of rheumatoid arthritis. This study was undertaken to establish the relative importance of caspase 1 and serine proteases in mouse models of acute and chronic inflammatory arthritis.


Acute and chronic arthritis were induced in caspase 1−/− mice, and the lack of caspase 1 was investigated for its effects on joint swelling, cartilage metabolism, and histopathologic features. In addition, caspase 1 activity was inhibited in mice lacking active cysteine proteases, and the effects of dual blockade of caspase 1 and serine proteases on arthritis severity and histopathologic features were evaluated.


Surprisingly, caspase 1−/− mice, in a model of acute (neutrophil-dominated) arthritis, developed joint swelling to an extent similar to that in wild-type control mice. Joint fluid concentrations of bioactive IL-1β were comparable in caspase 1−/− mice and controls. In contrast, induction of chronic arthritis (characterized by minimal numbers of neutrophils) in caspase 1−/− mice led to reduced joint inflammation and less cartilage damage, implying a caspase 1–dependent role in this process. In mice lacking neutrophil serine PR3, inhibition of caspase 1 activity resulted in decreased bioactive IL-1β concentrations in the synovial tissue and less suppression of chondrocyte anabolic function. In addition, dual blockade of both PR3 and caspase 1 led to protection against cartilage and bone destruction.


Caspase 1 deficiency does not affect neutrophil-dominated joint inflammation, whereas in chronic arthritis, the lack of caspase 1 results in reduced joint inflammation and cartilage destruction. These findings suggest that inhibitors of caspase 1 are not able to interfere with the whole spectrum of IL-1β production, and therefore such inhibitors may be of therapeutic value only in inflammatory conditions in which limited numbers of neutrophils are present.