SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. PATIENTS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. AUTHOR CONTRIBUTIONS
  7. Acknowledgements
  8. REFERENCES
  9. Supporting Information

Objective

Blocking interleukin-1 with anakinra in patients with the autoinflammatory syndrome neonatal-onset multisystem inflammatory disease (NOMID) reduces systemic and organ-specific inflammation. However, the impact of long-term treatment has not been established. This study was undertaken to evaluate the long-term effect of anakinra on clinical and laboratory outcomes and safety in patients with NOMID.

Methods

We conducted a cohort study of 26 NOMID patients ages 0.80–42.17 years who were followed up at the NIH and treated with anakinra 1–5 mg/kg/day for at least 36 months. Disease activity was assessed using daily diaries, questionnaires, and C-reactive protein level. Central nervous system (CNS) inflammation, hearing, vision, and safety were evaluated.

Results

Sustained improvements in diary scores, parent's/patient's and physician's global scores of disease activity, parent's/patient's pain scores, and inflammatory markers were observed (all P < 0.001 at 36 and 60 months). At 36 and 60 months, CNS inflammation was suppressed, with decreased cerebrospinal fluid white blood cell counts (P = 0.0026 and P = 0.0076, respectively), albumin levels, and opening pressures (P = 0.0012 and P < 0.001, respectively). Most patients showed stable or improved hearing. Cochlear enhancement on magnetic resonance imaging correlated with continued hearing loss. Visual acuity and peripheral vision were stable. Low optic nerve size correlated with poor visual field. Bony lesions progressed. Adverse events other than viral infections were rare, and all patients continued to receive the medication.

Conclusion

These findings indicate that anakinra provides sustained efficacy in the treatment of NOMID for up to 5 years, with the requirement of dose escalation. Damage progression in the CNS, ear, and eye, but not bone, is preventable. Anakinra is well tolerated overall.

Neonatal-onset multisystem inflammatory disease (NOMID; also known as chronic infantile neurologic, cutaneous, articular syndrome) (MIM 607115) is the most severe clinical phenotype of a spectrum of autoinflammatory disorders caused by autosomal dominant mutations in CIAS1 or NLRP3 (also called NALP3 or PYPAF1), termed cryopyrin-associated periodic syndromes (CAPS) (1, 2). Most patients with milder forms of CAPS (familial cold autoinflammatory syndrome and Muckle-Wells syndrome [MWS]) and NOMID patients present around birth with systemic inflammation, including fever and elevation of acute-phase reactants, conjunctivitis, and an urticaria-like rash. Hearing loss is seen in MWS patients but presents later in life than in NOMID patients. The severe organ-specific manifestations involving the eye, the severe manifestations in the central nervous system (CNS), with aseptic meningitis and ventriculomegaly, and the damage in the bone, with benign, tumor-like lesions, are seen only in NOMID patients (3). Before interleukin-1 (IL-1)–blocking therapy, disease-related progressive organ damage and treatment-related complications resulted in progressive hearing and vision loss, cognitive impairment, physical disability, and infections in NOMID patients and an estimated mortality of up to 20% before adulthood (4).

The discovery that NLRP3 is a critical component of an IL-1–activating and secreting complex termed the NLRP3 inflammasome (5–7) suggested IL-1 as a therapeutic target. The pivotal role of IL-1 in causing the clinical manifestations of CAPS was indeed confirmed by clinical studies, initially using the short-acting IL-1 receptor antagonist anakinra (8–10) and, more recently, with 2 long-acting IL-1 inhibitors (11–13).

While the short-term effects of IL-1–blocking agents on clinical symptoms and measures of systemic inflammation in the milder forms of CAPS are established, data on the effects of long-term IL-1 suppression on sustained clinical responses with regard to the organ-specific manifestations in NOMID are only recently emerging (14). In this open-label, long-term followup study, we evaluated the efficacy and safety of 36 and 60 months of IL-1–blocking therapy with the IL-1 receptor antagonist anakinra in controlling systemic and organ-specific inflammation and in preventing the progression of organ damage.

PATIENTS AND METHODS

  1. Top of page
  2. Abstract
  3. PATIENTS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. AUTHOR CONTRIBUTIONS
  7. Acknowledgements
  8. REFERENCES
  9. Supporting Information

Patients.

Of 43 patients who met the criteria for NOMID and were enrolled at the NIH Clinical Center between September 2003 and April 2010 in an ongoing study (NCT00069329), 26 had completed at least 36 months of treatment at the time of this analysis. Of these 26 patients, 20 had completed 60 months of treatment. All 26 patients were included in the analysis (see Supplementary Figure 1, available on the Arthritis & Rheumatism web site at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1529-0131). Enrolled patients had at least 2 of the following clinical manifestations: urticaria-like rash, CNS involvement (papilledema, cerebrospinal fluid [CSF] pleocytosis, or sensorineural hearing loss), or epiphyseal and/or patellar overgrowth on radiographs. All patients had evidence of current or prior CNS disease and all had active disease, as defined by the presence of daily symptoms assessed in a diary and elevated acute-phase reactant levels at baseline. Three of the patients had previously been treated with tumor necrosis factor inhibitors. At treatment initiation, patients had a mean ± SEM age of 11.5 ± 9.1 years (range 10 months to 42.2 years). Anakinra therapy was initiated in 4 children younger than 2 years (between 10 months and 20 months old). The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the National Institute of Arthritis and Musculoskeletal and Skin Diseases Institutional Review Board (IRB). Written informed consent was obtained from all patients or their legal guardians.

Study design and treatment.

Anakinra therapy was started at 1 mg/kg by daily subcutaneous injection. Stepwise dose increases of 0.5–1 mg/kg per injection were made as frequently as every 2 weeks to achieve laboratory and organ inflammation remission (as described below under Laboratory outcomes and Organ-specific outcomes). The IRB-approved maximal anakinra dosage, initially 2 mg/kg/day, was increased to 3 mg/kg/day in December 2004 and to 5 mg/kg/day in May 2007, allowing for higher dosages of medication later in the course of the study. Clinical assessments were performed at the NIH at baseline and at 6, 12, 18, 24, 30, and 36 months in 26 patients. An additional assessment was performed at 60 months in 20 of the patients.

Assessment of clinical end points.

Clinical outcomes.

A NOMID-specific daily diary was kept by the patient or parent at home (10) and was filled out an average of 70.80% of days during the treatment period. The Childhood Health Assessment Questionnaire (C-HAQ) (15) and a visual analog scale for pain and overall disease activity were completed by the parent or patient and by the physician at each NIH visit.

Laboratory outcomes.

Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) level were analyzed at the NIH Clinical Center laboratory. Serum amyloid A (SAA) was measured as previously described (16). Systemic inflammatory remission was defined as a normal CRP level (≤0.5 mg/dl). Normal ESR values were defined as ≤25 mm/hour, and normal SAA values were defined as ≤10 mg/liter.

Organ-specific outcomes.

Magnetic resonance imaging (MRI) with gadolinium-enhanced fluid-attenuated inversion recovery (FLAIR) sequences and fast imaging employing steady-state acquisition were performed yearly to obtain images of the brain and inner ear. Cochlear enhancement on FLAIR MRI was graded on a scale of 0–3, where 0 = no signal, 1 = signal barely detectable above noise, 2 = signal comparable to brain parenchymal signal, and 3 = signal comparable to T2 signal of fluid. The images were graded by a single investigator (JAB) who was blinded with regard to the sequence of the radiographs.

Organ inflammation and damage were assessed at baseline and during treatment. Absence of organ inflammation was defined in the CNS as a normal CSF white blood cell (WBC) count (≤5 cells per microliter) and the absence of leptomeningeal enhancement on MRI, and in the eyes as the absence of eye inflammation on examination. After 2006, the presence of cochlear enhancement on inner ear MRI was also defined as organ inflammation in the inner ear and resulted in dose increases. CNS, hearing, vision, and bone end points are described in the supplementary text available on the Arthritis & Rheumatism web site at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1529-0131.

Other end points included corticosteroid dose and drug safety parameters. Adverse events were recorded as clinically described and were coded and graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0 after study completion. Those occurring at lower anakinra dosages (≤2.5 mg/kg/day) and higher dosages were summarized to assess a dose effect on adverse events. Pharmacokinetic studies of anakinra dosages up to 4.5 mg/kg/day were performed (see supplementary text available on the Arthritis & Rheumatism web site at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1529-0131).

Statistical analysis.

Descriptive statistics were used to summarize demographic and baseline characteristics. All analyses were performed using Stata, version 10 (StataCorp). Data at 12, 24, 36, and 60 months were compared to baseline values using paired t-tests or Wilcoxon's signed rank tests. The chi-square test was used for unpaired dichotomous proportional end points and McNemar's test was used for paired data. The mean ± SEM and 95% confidence intervals were calculated from all data points available for the respective time point. Only data available at both time points were included for paired statistical analyses. Mixed model analyses to account for the correlation of paired organs were used to assess audiology and vision outcomes. All P values are 2 sided and were not adjusted for multiple comparisons.

The percentage of patients whose disease was in systemic inflammatory remission, and the mean scores of MRI cochlear enhancement following 6 months of treatment in each patient were calculated (see supplementary text available on the Arthritis & Rheumatism web site at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1529-0131).

RESULTS

  1. Top of page
  2. Abstract
  3. PATIENTS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. AUTHOR CONTRIBUTIONS
  7. Acknowledgements
  8. REFERENCES
  9. Supporting Information

Patient demographics and baseline patient characteristics.

All 26 patients had active disease at baseline as defined by diary scores and elevated levels of inflammatory markers (Figures 1A and B). The majority of the patients (21 of 26) had mutations in CIAS1. Reliable results of lumbar punctures performed within 3 months of baseline were obtained in 24 of the 26 patients (see supplementary text available on the Arthritis & Rheumatism web site at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1529-0131). Increased intracranial pressure was seen in the great majority of these patients (21 of 24), and aseptic meningitis was present in 19 of the 24 patients. All patients had historically proven aseptic meningitis by lumbar puncture prior to the baseline visit. Growth retardation below the 3rd percentile (in 16 of the 26 patients) and body weight below the 3rd percentile (in 15 of the 26 patients) were frequent. Specific organ damage present at baseline was recorded (Table 1).

thumbnail image

Figure 1. Systemic manifestations in patients with neonatal-onset multisystem inflammatory disease treated with anakinra. A, Patient diary score, Childhood Health Assessment Questionnaire (C-HAQ) score, parent's/patient's global score of overall disease activity, and parent's/patient's pain ratings at baseline and after 1, 2, 3, and 5 years of anakinra treatment. B, C-reactive protein (CRP) level, erythrocyte sedimentation rate (ESR), and serum amyloid A (SAA) level at baseline and after 1, 2, 3, and 5 years of anakinra treatment. Bars show the mean ± SEM. ∗ = P < 0.05; ∗∗ = P < 0.001, versus baseline.

Download figure to PowerPoint

Table 1. Baseline demographic characteristics and organ-specific disease damage in the 26 NOMID patients*
  • *

    Except where indicated otherwise, values are the number (%) of patients. Percentages may not total 100 because of rounding. NOMID = neonatal-onset multisystem inflammatory disease; DMARDs = disease-modifying antirheumatic drugs; NSAIDs = nonsteroidal antiinflammatory drugs; CNS = central nervous system; MRI = magnetic resonance imaging.

  • Self-reported by the patient or parent.

  • Assessed in 24 patients.

  • §

    Assessed in 22 patients.

  • Two patients in addition to those with ventriculomegaly had ventriculoperitoneal (VP) shunts.

  • #

    Other damage included band keratopathy in 3 patients, anterior corneal stromal opacification in 6 patients, retinal scarring in 1 eye, tortuous vessels in 3 eyes, and sheathing of vessels (or gliosis) around the optic nerve head in 11 patients.

  • **

    Assessed in 18 patients.

Demographic characteristics 
 Age, mean ± SD years11.53 ± 9.12
 Age group 
  0–3 years4 (15)
  4–8 years9 (35)
  9–12 years5 (19)
  13–18 years4 (15)
  ≥19 years4 (15)
 Sex, female/male13 (50)/13 (50)
 Race 
  White17 (65)
  African American1 (4)
  Hispanic6 (23)
  Asian1 (4)
  Native American1 (4)
CIAS1 mutation21 (81)
Treatment 
 DMARDs 
  Methotrexate9 (35)
  Etanercept3 (12)
  Thalidomide1 (4)
  Colchicine2 (8)
 Oral corticosteroids14 (54)
 Oral corticosteroid dosage, mean ± SD mg/kg/day0.85 ± 1.11
 NSAIDs15 (58)
 
Baseline damage 
 Growth retardation (3rd percentile)16 (62)
 CNS damage18 (69)
  Stroke4 (15)
  Seizures5 (19)
  Below average cognitive function (IQ)14 (58)
   Extremely low (<70)6 (25)
   Borderline (70–79)4 (17)
   Low average (80–89)4 (17)
  Evidence of brain damage on brain MRI17 (65)
   Ventriculomegaly11 (42)
   Brain atrophy4 (15)
   Arachnoid adhesions§15 (68)
   VP shunts2 (8)
 Inner ear damage (hearing loss)18 (69)
  Mild (>20 to ≤40 dB)5 (19)
  Moderate (>40 to ≤70 dB)7 (27)
  Severe (>70 to <95 dB)4 (15)
  Profound (≥95 dB)2 (8)
 Eye damage20 (77)
  Optic nerve atrophy, no. mild or moderate/no. severe6/3
  Other damage#15 (58)
  Vision loss8 (31)
  Legal blindness (<20/200), no. of patients/no. of eyes3/5
  Visual field constriction**12 (67)
 Bone damage 
  Bone overgrowth10 (38)
  Joint contractures18 (69)
  Limb length discrepancies6 (23)

Primary outcome of clinical and laboratory response.

A clinical and laboratory response to anakinra was achieved and sustained in all patients. Scores for daily diaries, parent's and physician's global assessment of disease activity, parent's assessment of pain, and C-HAQ decreased significantly from baseline to 36 months (P = 0.0016 for C-HAQ and P < 0.001 for all other assessments). Between 36 months and 60 months these parameters did not change significantly (Figure 1A). Similarly robust decreases in inflammatory markers (CRP level, ESR, and SAA) were seen from baseline to 12 months and from baseline to 36 months (all P < 0.001) with stable values from 36 months to 60 months (Figure 1B). Systemic inflammatory remission was achieved in all patients; however, remission and relapse occurred often in patients with infections or stress. At 12 months, systemic inflammatory remission had been achieved in 46% of the patients compared to 50% at 24 months, 58% at 36 months, and 65% at 60 months.

Patients with growth below the 3rd percentile at baseline showed the largest percentile increases, indicating catch up growth at 36 months and 60 months (P = 0.018 and P = 0.021, respectively, versus baseline). This was also observed for weight gain (P < 0.001 at 36 months and 60 months, versus baseline). Among the 16 patients taking corticosteroids at baseline, the mean daily prednisone equivalent dosage decreased from 0.80 mg/kg/day at baseline to 0.054 mg/kg/day at 36 months (P = 0.0052) and 0.033 mg/kg/day at 60 months (P = 0.021). Anakinra dosages ranged from 2 mg/kg/day to 4.5 mg/kg/day at 36 months, and from 2 mg/kg/day to 5 mg/kg/day at 60 months, with a slightly lower time of exposure at low dosages (defined as ≤2.5 mg/kg/day) (69.21 patient-years) compared to high dosages (defined as >2.5 mg/kg/day) (78.89 patient-years).

Secondary outcomes.

CNS outcomes.

At baseline, CNS organ damage and/or cognitive disabilities were seen in 18 of 24 patients. Four patients had prior strokes, 5 had seizures, and 10 had cognitive impairment (IQ <80). MRI evidence of permanent CNS organ damage in 17 patients included ventriculomegaly, ventriculoperitoneal shunts, brain atrophy, and arachnoid adhesions (Table 1).

Indicators of active CNS inflammation, including CSF leukocyte count and elevated opening pressure, decreased significantly at the study end points 36 and 60 months compared to baseline (P = 0.0026 and P = 0.0076, respectively, for CSF WBC count and P = 0.0012 and P < 0.001, respectively, for opening pressure) (Figure 2A). Abnormal CSF leukocyte and opening pressure values were frequently seen in the setting of normal blood inflammatory marker values. Of the 11 patients (of 25 assessed) with elevated CSF leukocyte count at 36 months, 7 had normal CRP values, and of the 12 patients (of 24 assessed) with elevated opening pressure at 36 months, 4 had normal serum CRP values. Of the 21 patients (88% of the 24 assessed) with elevated intracranial pressure at baseline, all but 3 showed decreases at both 36 and 60 months. Mean CSF protein levels also decreased significantly, from 45.5 mg/dl at baseline to 35.9 mg/dl at 36 months (P = 0.026) and 41.2 mg/dl at 60 months (P = 0.80).

thumbnail image

Figure 2. Central nervous system outcomes in patients with neonatal-onset multisystem inflammatory disease treated with anakinra. Lumbar punctures were obtained in 24 of 26 patients at baseline, 24 of 26 patients at 36 months, and 18 of 20 patients at 60 months. Two patients were unable to undergo a lumbar puncture (1 due to spinal lipomatosis and 1 due to technical difficulties). A, Cerebrospinal fluid (CSF) leukocyte (white blood cell [WBC]) count, albumin level, and opening pressure at baseline and after 1, 2, 3, and 5 years of anakinra treatment. Decreases were seen at all time points. Bars show the mean ± SEM. ∗ = P < 0.05; ∗∗ = P < 0.001, versus baseline. B, Example of leptomeningeal enhancement seen on the gadolinium-enhanced magnetic resonance image (MRI) obtained at baseline and no longer detected on MRIs obtained at the 3-year and 5-year followup examinations.

Download figure to PowerPoint

No further significant decreases were seen in mean CSF leukocyte count, opening pressure, or protein level from 36 months to 60 months. The majority of the patients with abnormal CSF leukocyte count or opening pressure underwent dose escalation. Seven of 9 patients with elevated CSF leukocyte count at 36 months and 9 of 10 patients with elevated opening pressure at 36 months improved at 60 months. Of the 5 patients with elevated CSF leukocyte count at 60 months, 3 were receiving the maximum IRB-approved anakinra dosage of 5 mg/kg daily. Despite significant decreases in opening pressure with treatment, acetazolamide treatment was still required in 13 of the 26 patients at 36 months and in 9 of the 20 patients at 60 months.

Leptomeningeal enhancement on FLAIR MRI (Figure 2B) was present in 10 of the 26 patients at baseline but was less sensitive in indicating CNS inflammation than the CNS WBC count, which was elevated in all patients at baseline. The number of patients with leptomeningeal enhancement decreased to 3 of 26 patients at 36 months (P = 0.039) and 1 of 20 patients at 60 months (P = 0.016). Patients with leptomeningeal enhancement at baseline had significantly higher CSF albumin levels compared to patients without enhancement (P = 0.039). The improvements in leptomeningeal enhancement, albumin, and albumin quotient without changes in the IgG index (data not shown) at 36 months and 60 months suggest improvement of the blood–brain barrier leak with treatment (P = 0.0044 and P = 0.016, respectively). Mean IQ levels did not significantly change from baseline to either 36 months or 60 months.

Hearing outcomes.

The majority of the patients, 18 of 26, had at least mild hearing loss in 1 ear at baseline (Table 1). Hearing loss correlated with older age (Spearman's ρ = 0.52, P = 0.021) and was most pronounced at higher frequencies (4,000 Hz and 8,000 Hz). However, hearing loss was observed at all frequencies (see Supplementary Figures 2A and B, available on the Arthritis & Rheumatism web site at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1529-0131).

Improvement in hearing occurred in 30% of ears, and progression of hearing loss was halted in the majority of the patients. In ears with progressive hearing loss (9 of 44) at 36 months, hearing loss was present at baseline and the progression occurred mostly during the first 3 years of treatment. Between 36 months and 60 months, hearing worsened in 4 additional ears (Figure 3A). Patients with worsened hearing had a higher mean CRP level over the first 36 months of the study (P = 0.017). One patient with severe hearing loss at baseline and progressive hearing loss during the study successfully received a cochlear implant at month 50.

thumbnail image

Figure 3. Audiology outcomes in patients with neonatal-onset multisystem inflammatory disease treated with anakinra. A, Comparison of mean bone 4-frequency pure-tone averages (4F-PTAs) (at 0.5k Hz, 1k Hz, 2k Hz, and 4k Hz) at baseline (x-axis) and at the 3-year and 5-year followup examinations (y-axis). The broken line indicates the estimated mean 4F-PTA. Red circles indicate ears with worsening of hearing with a mean change in 4F-PTA of ≥10 dB, and purple circles indicate ears with worsening of hearing with a mean change in 4F-PTA between 5 dB and 10 dB. Green circles indicate hearing in 4 patients (8 ears) who were younger than 20 months of age at enrollment. In these 4 patients, hearing was first assessable by 4F-PTA between 2.5 and 3 years of age, which was used as the baseline, and the last hearing assessment was conducted at 60 months for 3 patients and at 48 months for 1 patient. Upper case letters represent individual patients; r and l indicate the right and left ears, respectively. B, Cochlear enhancement pre– and post–gadolinium contrast on fluid-attenuated inversion recovery magnetic resonance imaging. Arrows indicate the cochlea; arrowheads indicate the vestibule. The enhancement seen on the postcontrast images at baseline had subsided on the images obtained after 3 years of treatment. C, Significantly higher cochlear enhancement scores in ears with hearing loss progression compared to those without hearing loss progression. Bars show the mean ± SEM. ∗ = P < 0.05 versus ears without hearing loss progression.

Download figure to PowerPoint

Cochlear enhancement on gadolinium-enhanced MRI (Figure 3B) was seen in 22 of 25 patients at baseline, indicating an inflammatory origin of the hearing loss. Cochlear enhancement persisted in 14 of 25 patients at 36 months (P = 0.0078) and in 10 of 19 patients at 60 months (P = 0.031). However, the mean cochlear enhancement scores improved significantly (see Supplementary Figure 2C, available on the Arthritis & Rheumatism web site at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1529-0131). Interestingly, mean cochlear enhancement scores were predictive of hearing loss, with higher scores observed for ears with progressive hearing loss compared to those ears with stable or improved hearing (Figure 3C). Mean cochlear enhancement scores were significantly correlated with the degree of hearing loss (see Supplementary Figure 2D, available on the Arthritis & Rheumatism web site at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1529-0131).

All 4 very young children who were younger than 20 months of age at enrollment had inner ear enhancement at baseline and normal hearing at their last recorded followup visit: 1 child at 48 months and 3 children at 60 months (Figure 3A, green dots) with 3 of the 4 showing resolution of inner ear enhancement on MRI at 36 months and 60 months.

Vision outcomes.

At baseline, decreased visual acuity was present in at least 1 eye in 8 of the 26 patients, and 5 eyes of 3 patients were legally blind. Peripheral vision abnormalities were seen in 12 of the 18 patients able to perform testing, and 3 had severely reduced visual fields at baseline (Table 1). Nine patients had optic nerve atrophy. Of the 9 patients with optic pallor at baseline, 1 had trace, 5 had mild to moderate, and 3 had severe optic nerve atrophy. Other forms of eye damage were seen in 15 of the 26 patients (Table 1).

Inflammatory eye manifestations included conjunctivitis (in 25 of 26 patients), anterior uveitis (in 11 of 26 patients), posterior uveitis (in 2 of 26 patients), and papilledema (in 22 of 26 patients). Of the 4 patients without papilledema on baseline examination, 2 patients had severe optic nerve atrophy and did not have sufficient nerve fiber mass to mount papilledema, and 1 patient had posterior uveitis, which interfered with an adequate visual assessment of the optic nerve. Patient diary scores for conjunctivitis and papilledema scores on eye examination significantly decreased from baseline to 36 months and remained low at 60 months (Figure 4A). Papilledema resolved in all but 2 of 26 patients at 36 months and in all but 1 of 20 patients at 60 months, and at 60 months the affected patient had only mild papilledema. Anterior and posterior uveitis resolved in all patients; 1 patient with posterior uveitis was left with retinal scaring and blindness in the affected eye.

thumbnail image

Figure 4. Ophthalmology outcomes in patients with neonatal-onset multisystem inflammatory disease treated with anakinra. A, Significant decreases in conjunctivitis and papilledema scores throughout the study. Bars show the mean ± SEM. ∗∗ = P < 0.001 versus baseline. B, Significant correlation of low optic nerve thickness, measured by optical coherence tomography, with visual field loss. A near linear correlation was observed for optic nerve thickness of less than ∼80μ.

Download figure to PowerPoint

Visual acuity and peripheral vision improved or stabilized in most patients over 5 years. One patient had worsening of visual acuity, and 2 other patients had worsening of peripheral vision in the absence of clinically detectable intraocular inflammation. All 3 of these patients had severely atrophic nerves at baseline. Both patients with worsening of peripheral vision presented with significant nerve fiber loss at baseline, suggesting that nerve fiber loss is an indicator of continued functional loss. Reduced peripheral vision correlated with reduced optic nerve thickness with an optic nerve fiber mass of <80μ on optical coherence tomography (OCT), showing a linear correlation with peripheral vision loss (Figure 4B). The 4 children who were younger than 20 months of age at enrollment had normal OCT measurements when measurements could first be obtained, suggesting that optic nerve fiber mass was preserved in patients receiving treatment who did not have optic nerve fiber loss at baseline.

Bone outcomes.

Bony overgrowth was present in 10 of 26 patients; some patients had joint contractures and limb length discrepancy (Table 1). Despite anakinra therapy, the volume of the bony lesions increased significantly. In 4 patients with open growth plates and paired MRIs, the mean lesion volume increased at 3 months, at 12 months, and at 36 months (P < 0.05 for all analyses). In patients with unilateral bone lesions with a contralateral unaffected bone, the longitudinal growth of the affected bone was less than the growth of the unaffected bone, leading to limb length discrepancies. No new bone lesions developed in patients while they were receiving anakinra therapy.

Outcomes in mutation-positive versus mutation-negative patients.

The distinction of mutation-positive versus mutation-negative is dependent on the method of sequencing. By the Sanger method of sequencing, 21 patients were mutation positive, and 5 were mutation negative. Subsequent analysis with deep sequencing and subcloning techniques showed that 4 of the 5 mutation-negative patients had evidence of mosaicism (17). No differences were observed between patients who were mutation positive and those who were mutation negative, as determined by Sanger method, at 36 months or 60 months in terms of anakinra dose requirements or response to treatment as measured by inflammatory markers (CRP level, SAA, and ESR), global measures of disease activity, CSF leukocyte count and opening pressure, visual field mean deviation scores, or 4-frequency pure-tone average (4F-PTA) measurements of hearing loss.

Medication dosing, pharmacokinetics, and safety.

Over the study period, the anakinra dosages that were required to maintain clinical remission ranged from 2 mg/kg/day to 5 mg/kg/day. The maximum dosage was required in 4 of 20 patients at 60 months. Drug exposure (area under the plasma concentration curve) increased linearly in proportion to the anakinra dose.

Over the 148.1 patient-year study period, no dose-limiting toxicity was observed; however, viral upper respiratory infections, gastroenteritis, otitis media, and urinary tract infections were frequent (Table 2). The infection rate did not show a dose-dependent difference in patients treated with anakinra ≤2.5 mg/kg/day compared to patients treated with anakinra >2.5 mg/kg/day. Five episodes of suspected viral pneumonia occurred in 3 patients receiving higher dosages, a finding that warrants followup. Injection site reactions occurred frequently. No malignancies were observed, and no patient discontinued the study drug. The mean ± SEM glomerular filtration rate did not change from 0 months to 36 months to 60 months, with values of 120.7 ± 44.6, 123.7 ± 46.8, and 115 ± 33.1, respectively.

Table 2. Cumulative adverse event summary*
 Low-dose anakinra (≤2.5 mg/ kg/day)High-dose anakinra (>2.5 mg/ kg/day) Low-dose anakinra (≤2.5 mg/ kg/day)High-dose anakinra (>2.5 mg/ kg/day)
  • *

    Values are the number of cases. BUN = blood urea nitrogen; ALT = alanine aminotransferase.

  • Other cardiology manifestations included cardiac catheterization in 1 patient receiving low-dose anakinra and sinus tachycardia in 1 patient receiving low-dose anakinra and 1 patient receiving high-dose anakinra.

  • Other gastrointestinal manifestations included flatulence in 1 patient receiving low-dose anakinra.

  • §

    Other general manifestations included arthropod bite, enuresis, dysphonia/stridor, and encopresis each in 2 patients and attention deficit, breath odor, carpal tunnel syndrome, convulsion, cyst, decreased appetite, genital lesion, milk allergy, nephrolithiasis, penis disorder, restless legs syndrome, thrombophlebitis, and increased weight each in 1 patient receiving low-dose anakinra and ingrowing nail in 2 patients and arthropod bite, hypoacusis, peripheral edema, and dysphonia/stridor each in 1 patient receiving high-dose anakinra.

  • Other infectious disease manifestations included eye sty in 2 patients and abdominal abscess, eye infection, and histiocystosis hematophagica each in 1 patient receiving low-dose anakinra and oral herpes, scarlet fever, and viral aseptic meningitis each in 1 patient receiving high-dose anakinra.

  • #

    Five cases of pneumonia (including only 1 with documented radiographic findings [perihilar infiltrates]) occurred in 3 patients.

  • **

    Other laboratory manifestations included low retic count, neutropenia, low magnesium, abnormal bicarbonate, increased aspartate aminotransferase, increased hepatic enzymes, increased bilirubin, increased total serum protein, hematuria, proteinuria, ketonuria, glycosuria, and hypothyroidism each in 1 patient receiving low-dose anakinra.

  • ††

    Other ophthalmology manifestations included eye swelling, glaucoma, and blurred vision each in 1 patient receiving low-dose anakinra and blepharospasm, eye pruritus, and blurred vision each in 1 patient receiving high-dose anakinra.

  • ‡‡

    Other pulmonary manifestations included bronchial hyperreactivity in 1 patient receiving low-dose anakinra.

  • §§

    Other potential neonatal-onset multisystem inflammatory disease (NOMID) manifestations included joint swelling in 1 patient receiving low-dose anakinra.

Patient-years69.2178.89Infectious diseases  
Allergy/hematology   Cellulitis61
 Angioedema10 Fungal skin infection33
 Pruritus01 Ear infection1716
 Macrophage activation syndrome01 Gastroenteritis1211
Cardiology   Pneumonia#05
 Chest pain53 Sinusitis1410
Dermatology   Upper respiratory infection5862
 Injection reaction101 Urinary tract infection124
Gastrointestinal   Streptococcal pharyngitis33
 Abdominal discomfort1014Laboratory**  
 Nausea/vomiting1110 Anemia20
 Oral ulcers50 Eosinophilia20
 Constipation13 Hyponatremia20
General§   High BUN20
 Trauma75 Increased ALT20
 Malaise1917Ophthalmology††  
 Dizziness64 Nystagmus02
 Surgeries45Pulmonary‡‡  
 Gait disturbance13 Dyspnea30
 Hypoesthesia13Potential NOMID manifestations§§  
 Sleep disorder25 Musculoskeletal pain7147
 Post–lumbar puncture syndrome40 Headache3058
 Nasal congestion1617 Fever628
 Epistaxis41 Uveitis31
    Conjunctivitis924
    Rash2732

Six serious adverse events were thought to be possibly related to the study drug. These included 2 wound infections, an episode of macrophage activation syndrome (MAS), posttraumatic hypopyon, vertigo, and gastroenteritis. Anakinra was not discontinued in any patient or during infections. The patient who developed MAS had 2 episodes of MAS before starting anakinra and 2 episodes while receiving anakinra.

DISCUSSION

  1. Top of page
  2. Abstract
  3. PATIENTS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. AUTHOR CONTRIBUTIONS
  7. Acknowledgements
  8. REFERENCES
  9. Supporting Information

NOMID is a systemic autoinflammatory disease caused by gain-of-function mutations in NLRP3 that illustrates the effects of increased IL-1 levels on organ inflammation and damage in human disease. The life-changing impact of treatment with IL-1–blocking therapies confirms the important role of IL-1β in the pathogenesis of not only NOMID and the clinically milder forms of CAPS (8–13), but also other IL-1–mediated diseases, including gout (18–20) and Still's disease (21, 22).

Herein, we present data indicating that 36 months or 60 months of IL-1–blocking therapy leads to sustained improvement of symptoms and serum markers of inflammation, reduction in manifestations due to organ inflammation, and stabilization of organ function in patients with NOMID. We suggest that anakinra doses need aggressive, individual adjustments to achieve control of inflammation and describe modalities to monitor CNS, inner ear, and eye disease in NOMID patients with severe disease.

The irreversible organ damage that develops in patients with untreated NOMID, which is largely absent in patients with the milder forms of CAPS, is a consequence of chronic organ inflammation. In most patients in our study, the progression of organ damage was halted, and organ function (hearing, vision, and cognition) was preserved. A small subset of patients had further hearing loss and vision impairment and, notably, progression in bone lesion size was seen in all patients who had nonossified lesions at study enrollment.

Although hearing improvement was seen in 30% of ears early in the course of treatment, patients with severe hearing loss at baseline typically did not show improvement, likely due to irreversible cochlear damage from prior inflammation. Cochlear enhancement as visualized on MRI at baseline and during the study was most pronounced in patients with severe hearing loss at baseline and in ears with progressive hearing loss, suggesting that inner ear enhancement on MRI may be predictive of further hearing loss. Higher CSF leukocyte values at baseline were associated with the development of hearing loss (data not shown). However, since hearing loss and cochlear enhancement are often asymmetric, local factors at the tissue level must also be important.

Visual acuity and peripheral vision were preserved in most patients. Improvements in visual acuity from baseline were judged to be due to resolution of papilledema and a possible learning factor in testing. Progressive optic nerve atrophy, a known consequence of chronically increased intracranial pressure (23), is the main cause of vision loss in patients with NOMID. Other, rare causes include scarring from posterior uveitis and corneal clouding. We observed progressive vision loss in 2 patients receiving treatment. Both of these patients had severely reduced optic nerve fiber mass at baseline and no evidence of ocular inflammation during the study. Optic nerve thickness measurements obtained before the initiation of anakinra treatment may thus identify patients at risk of vision loss, and may be useful in monitoring the optic nerve during treatment.

Headaches and CSF leukocytosis improved dramatically during anakinra treatment, but low-grade CNS inflammation persisted in some patients without headaches and in the presence of normal serum CRP values. Although the consequences of low-grade CNS inflammation over time are not known, we have observed reduction in WBC counts and opening pressure with further anakinra dose escalation. Given that dose-dependent increases in anakinra concentration in the CNS have been measured in nonhuman primates (24), we advocate increasing doses of IL-1–blocking agents to attempt to achieve remission of CNS inflammation. At this point we do not know whether persistently elevated opening pressure in the absence of measureable CNS inflammation would respond to further increases in anakinra; this will be addressed in future studies.

Bone lesions present at baseline continue to grow during therapy. Biopsy specimens of these lesions are void of inflammatory cells, and cells from these lesions have an osteoblast progenitor cell phenotype that is also seen in fibroblastoid tumors, with IL-1–independent proliferation (25).

Anakinra dose escalation was necessary to control inflammation. The criteria of dose escalation evolved during the study from initial dose increases for clinical symptoms and elevated CRP levels to increases based on persistent organ inflammation of the eyes, inner ear, and CNS, given evidence of organ inflammation in patients who at the time of examination had no symptoms and normal acute-phase reactant levels. We have used CRP levels rather than SAA levels to define systemic inflammatory remission since they are highly correlated (data not shown) and reliable SAA measurements were unavailable after June 2009.

Whether the rapid response to anakinra can also be attributed to its ability to block both IL-1α and IL-1β is currently not known; however, CAPS patients respond to treatment with specific IL-1β blockade (13). There are a number of triggers, including IL-1α, lipopolysaccharide, ATP, and monosodium urate monohydrate released by dying cells, that are potential stimulators of the inflammasome in vivo, but we have no data at this point regarding their relative contribution to promoting the exaggerated inflammasome activation in patients with NLRP3 mutations. Interestingly, temporary dose increases during active infections or surgery are frequently necessary since patients can develop flares while receiving anakinra in these situations, suggesting that the exaggerated IL-1 response in the context of infections and other stressors remains in treated patients.

Limitations of this study include the open-label treatment study design, which is ethically necessary given the proven efficacy of IL-1 inhibition for the severe clinical manifestations of NOMID. As such, the rates of organ damage progression in untreated patients were not measured, but historical data and our organ damage assessment at the initiation of the study provide cross-sectional data on hearing, vision, and cognitive impairment. Optimal doses of anakinra to control inflammation in patients with NOMID were unknown at the initiation of the study. Therefore, anakinra dose escalation occurred more slowly in the initially enrolled patients until IRB approval was obtained for doses of up to 5 mg/kg. Given the progression of hearing loss in some patients with inner ear inflammation in the first 3 years of the study when the anakinra doses were still lower, we favor a rapid dose-escalation schedule with titration to control systemic as well as organ-specific inflammation, with the goal of achieving systemic inflammatory remission and the absence of organ inflammation.

Our data, including the absence of any hearing or vision loss in the 4 youngest children who began treatment before the age of 2 years, raise the hope that organ damage can be prevented with the initiation of treatment at early time points (before the development of organ damage). Our findings emphasize the importance of early diagnosis and aggressive treatment in patients with severe disease.

Dysregulation of IL-1 contributes to the pathology of genetically complex disorders such as gout (18), Behçet's disease (26, 27), diabetes mellitus (28), Alzheimer's disease (29), and atherosclerosis (30, 31). Insight gained through the study of patients with NOMID may not only help in elucidating the inflammatory pathogenesis of these disorders and other eye and hearing conditions but may also guide rational therapeutic approaches in these conditions.

AUTHOR CONTRIBUTIONS

  1. Top of page
  2. Abstract
  3. PATIENTS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. AUTHOR CONTRIBUTIONS
  7. Acknowledgements
  8. REFERENCES
  9. Supporting Information

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Dr. Goldbach-Mansky had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study conception and design. Wiggs, Brewer, Zalewski, Kim, Paul, Pucino, Wesley, Goldbach-Mansky.

Acquisition of data. Sibley, Plass, Snow, Wiggs, Brewer, King, Zalewski, Kim, Bishop, Hill, Paul, Kicker, Phillips, Dolan, Stone, Chapelle, Butman, Goldbach-Mansky.

Analysis and interpretation of data. Sibley, Plass, Snow, Brewer, King, Zalewski, Kim, Bishop, Paul, Kicker, Widemann, Jayaprakash, Pucino, Chapelle, Snyder, Butman, Wesley, Goldbach-Mansky.

Acknowledgements

  1. Top of page
  2. Abstract
  3. PATIENTS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. AUTHOR CONTRIBUTIONS
  7. Acknowledgements
  8. REFERENCES
  9. Supporting Information

The authors would like to thank Dr. Phil Hawkins for measurements of the serum amyloid A levels, Hang Pham for sample management, and Bahar Afshar for help with data collection. The authors would also like to thank the following referring physicians for their ongoing support and collaboration in this study: Dr. Barbara Adams, Dr. Laurie Beitz, Dr. Susan Boyer, Dr. Ruy Carrasco, Dr. Peter Dent, Dr. Robert Fuhlbrigge, Dr. Amnon Goodman, Dr. Brandt Groh, Dr. William Hannon, Dr. Hal Hoffman, Dr. James Jarvis, Dr. Phillip Khan, Dr. Raju Khubhchandani, Dr. Daniel Kingsbury, Dr. Thomas Klausmeier, Dr. Ronald Laxer, Dr. Robert Listernick, Dr. Diana Milojevic, Dr. Terry Moore, Dr. Laura Schanberg, Dr. Rayfel Schneider, Dr. Bracha Shaham, Dr. Michael Shishov, Dr. Leonard Stein, Dr. Richard Vehe, Dr. Maria Vitoria Quintero, Dr. Robert Warren, and Dr. Elivette Zambrana. Last, but not least, the authors thank the parents and their families for their longstanding participation in this study.

REFERENCES

  1. Top of page
  2. Abstract
  3. PATIENTS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. AUTHOR CONTRIBUTIONS
  7. Acknowledgements
  8. REFERENCES
  9. Supporting Information
  • 1
    Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol 2009; 27: 62168.
  • 2
    Dinarello CA. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol 2011; 41: 120317.
  • 3
    Hill SC, Namde M, Dwyer A, Poznanski A, Canna S, Goldbach-Mansky R. Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA). Pediatr Radiol 2007; 37: 14552.
  • 4
    Prieur AM, Griscelli C, Lampert F, Truckenbrodt H, Guggenheim MA, Lovell DJ, et al. A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome: a specific entity analysed in 30 patients. Scand J Rheumatol Suppl 1987; 66: 5768.
  • 5
    Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT, Hofmann SR, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 2002; 46: 33408.
  • 6
    Feldmann J, Prieur AM, Quartier P, Berquin P, Certain S, Cortis E, et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 2002; 71: 198203.
  • 7
    Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004; 20: 31925.
  • 8
    Hawkins PN, Lachmann HJ, McDermott MF. Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med 2003; 348: 25834.
  • 9
    Hoffman HM, Rosengren S, Boyle DL, Cho JY, Nayar J, Mueller JL, et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 2004; 364: 177985.
  • 10
    Goldbach-Mansky R, Dailey NJ, Canna SW, Gelabert A, Jones J, Rubin BI, et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1β inhibition. N Engl J Med 2006; 355: 58192.
  • 11
    Goldbach-Mansky R, Shroff SD, Wilson M, Snyder C, Plehn S, Barham B, et al. A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 Trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum 2008; 58: 243242.
  • 12
    Hoffman HM, Throne ML, Amar NJ, Sebai M, Kivitz AJ, Kavanaugh A, et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum 2008; 58: 244352.
  • 13
    Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P, et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 2009; 360: 241625.
  • 14
    Neven B, Marvillet I, Terrada C, Ferster A, Boddaert N, Couloignier V, et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 2010; 62: 25867.
  • 15
    Singh G, Athreya BH, Fries JF, Goldsmith DP. Measurement of health status in children with juvenile rheumatoid arthritis. Arthritis Rheum 1994; 37: 17619.
  • 16
    Wilkins J, Gallimore JR, Tennent GA, Hawkins PN, Limburg PC, van Rijswijk MH, et al. Rapid automated enzyme immunoassay of serum amyloid A. Clin Chem 1994; 40: 128490.
  • 17
    Tanaka N, Izawa K, Saito MK, Sakuma M, Oshima K, Ohara O, et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an international multicenter collaborative study. Arthritis Rheum 2011; 63: 362532.
  • 18
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440: 23741.
  • 19
    So A, De Smedt T, Revaz S, Tschopp J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 2007; 9: R28.
  • 20
    Terkeltaub R, Sundy JS, Schumacher HR, Murphy F, Bookbinder S, Biedermann S, et al. The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study. Ann Rheum Dis 2009; 68: 16137.
  • 21
    Lequerre T, Quartier P, Rosellini D, Alaoui F, De Bandt M, Mejjad O, et al. Interleukin-1 receptor antagonist (anakinra) treatment in patients with systemic-onset juvenile idiopathic arthritis or adult onset Still disease: preliminary experience in France. Ann Rheum Dis 2008; 67: 3028.
  • 22
    Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med 2005; 201: 147986.
  • 23
    Ghose S. Optic nerve changes in hydrocephalus. Trans Ophthalmol Soc U K 1983; 103: 21720.
  • 24
    Fox E, Jayaprakash N, Pham TH, Rowley A, McCully CL, Pucino F, et al. The serum and cerebrospinal fluid pharmacokinetics of anakinra after intravenous administration to non-human primates. J Neuroimmunol 2010; 223: 13840.
  • 25
    Almeida MQ, Tsang KM, Cheadle C, Watkins T, Grivel JC, Nesterova M, et al. Protein kinase A regulates caspase-1 via Ets-1 in bone stromal cell-derived lesions: a link between cyclic AMP and pro-inflammatory pathways in osteoblast progenitors. Hum Mol Genet 2011; 20: 16575.
  • 26
    Gul A, Artim Esen B, Solinger A, Giustino L, Tugal Tutkun I. Safe, rapid-onset, and sustained biological activity of IL-1β regulating antibody XOMA 052 in resistant uveitis of Behçet's disease: preliminary results of a pilot trial [abstract]. Ann Rheum Dis 2010; 69 Suppl III: iii178.
  • 27
    Botsios C, Sfriso P, Furlan A, Punzi L, Dinarello CA. Resistant Behçet disease responsive to anakinra. Ann Intern Med 2008; 149: 2846.
  • 28
    Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007; 356: 151726.
  • 29
    Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat Immunol 2008; 9: 85765.
  • 30
    Crossman DC, Morton AC, Gunn JP, Greenwood JP, Hall AS, Fox KA, et al. Investigation of the effect of interleukin-1 receptor antagonist (IL-1ra) on markers of inflammation in non-ST elevation acute coronary syndromes (the MRC-ILA-HEART Study). Trials 2008; 9: 8.
  • 31
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464: 135761.

Supporting Information

  1. Top of page
  2. Abstract
  3. PATIENTS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. AUTHOR CONTRIBUTIONS
  7. Acknowledgements
  8. REFERENCES
  9. Supporting Information

Additional Supporting Information may be found in the online version of this article.

FilenameFormatSizeDescription
ART_34409_sm_SupplFig1.tif232KSupplementary Figure 1
ART_34409_sm_SupplFig2.tif624KSupplementary Figure 2
ART_34409_sm_SupplData.docx27KSupplementary Data

Please note: Wiley Blackwell is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.