Using global mapping to create more accurate document-level maps of research fields



We describe two general approaches to creating document-level maps of science. To create a local map, one defines and directly maps a sample of data, such as all literature published in a set of information science journals. To create a global map of a research field, one maps “all of science” and then locates a literature sample within that full context. We provide a deductive argument that global mapping should create more accurate partitions of a research field than does local mapping, followed by practical reasons why this may not be so. The field of information science is then mapped at the document level using both local and global methods to provide a case illustration of the differences between the methods. Textual coherence is used to assess the accuracies of both maps. We find that document clusters in the global map have significantly higher coherence than do those in the local map, and that the global map provides unique insights into the field of information science that cannot be discerned from the local map. Specifically, we show that information science and computer science have a large interface and that computer science is the more progressive discipline at that interface. We also show that research communities in temporally linked threads have a much higher coherence than do isolated communities, and that this feature can be used to predict which threads will persist into a subsequent year. Methods that could increase the accuracy of both local and global maps in the future also are discussed.