Entity disambiguation using semantic networks

Authors


  • Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
  • In collaboration with David Izraelevitz, Miriam Blake, and Gary Grider.

Abstract

A major stumbling block preventing machines from understanding text is the problem of entity disambiguation. While humans find it easy to determine that a person named in one story is the same person referenced in a second story, machines rely heavily on crude heuristics such as string matching and stemming to make guesses as to whether nouns are coreferent. A key advantage that humans have over machines is the ability to mentally make connections between ideas and, based on these connections, reason how likely two entities are to be the same. Mirroring this natural thought process, we have created a prototype framework for disambiguating entities that is based on connectedness. In this article, we demonstrate it in the practical application of disambiguating authors across a large set of bibliographic records. By representing knowledge from the records as edges in a graph between a subject and an object, we believe that the problem of disambiguating entities reduces to the problem of discovering the most strongly connected nodes in a graph. The knowledge from the records comes in many different forms, such as names of people, date of publication, and themes extracted from the text of the abstract. These different types of knowledge are fused to create the graph required for disambiguation. Furthermore, the resulting graph and framework can be used for more complex operations.

Ancillary