Using site-level connections to estimate link confidence



Search engines are essential tools for web users today. They rely on a large number of features to compute the rank of search results for each given query. The estimated reputation of pages is among the effective features available for search engine designers, probably being adopted by most current commercial search engines. Page reputation is estimated by analyzing the linkage relationships between pages. This information is used by link analysis algorithms as a query-independent feature, to be taken into account when computing the rank of the results. Unfortunately, several types of links found on the web may damage the estimated page reputation and thus cause a negative effect on the quality of search results. This work studies alternatives to reduce the negative impact of such noisy links. More specifically, the authors propose and evaluate new methods that deal with noisy links, considering scenarios where the reputation of pages is computed using the PageRank algorithm. They show, through experiments with real web content, that their methods achieve significant improvements when compared to previous solutions proposed in the literature.