SEARCH

SEARCH BY CITATION

References

  • Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. New York: Addison Wesley Longman.
  • Bian, J., Liu, Y., Agichtein, E., & Zha, H. (2008). Finding the right facts in the crowd: Factoid question answering over social media. In Proceedings of the 17th International Conference on World Wide Web (pp. 467476), Beijing, China. New York: ACM.
  • Blooma, M.J., Chua, A.Y.K., & Goh, D.H.-L. (2008). A predictive framework for retrieving the best answer. In Proceedings of the Association for Computing Machinery (ACM) Symposium on Applied Computing (pp. 11071111), Fortaleza, Ceara, Brazil. New York: ACM.
  • Boser, B.E., Guyon, I.M., & Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the Fifth annual Workshop on Computational Learning Theory (pp. 144152), Pittsburgh, PA. New York: ACM.
  • Bouguessa, M., Dumoulin, B., & Wang, S. (2008). Identifying authoritative actors in question-answering forums: The case of Yahoo! answers. In Proceedings of the 14th Association for Computing Machinery Special Interest Group on Knowledge Discovery and Data Mining (ACM KDD) International Conference on Knowledge Discovery and Data Mining (pp. 866874), Las Vegas, NE. New York: ACM.
  • Cao, X., Cong, G., Cui, B., Jensen, C.S., & Zhang, C. (2009). The use of categorization information in language models for question retrieval. In Proceedings of the 18th Association for Computing Machinery (ACM) Conference on Information and Knowledge Management (pp. 265274), Hong Kong, China. New York: ACM.
  • Cao, Y., Duan, H., Lin, C.-Y., & Yu, Y. (2011). Re-ranking question search results by clustering questions. Journal of the American Society for Information Science and Technology, 62(6), 11771187.
  • Chiang, M.-F., Wang, T.-W., & Peng, W.-C. (2010). Parallelizing Random Walk with Restart for large-scale query recommendation. In Proceedings of the Workshop on Massive Data Analytics on the Cloud (pp. 8:18:6), Raleigh, NC. New York: ACM.
  • Chinese Knowledge and Information Processing (CKIP). (2013). Retrieved from http://godel.iis.sinica.edu.tw/CKIP/engversion/index.htm
  • Collins-Thompson, K., Ogilvie, P., Zhang, Y., & Callan, J. (2003). Information filtering, novelty detection, and named-page finding. In Proceedings of the Text Retrieval Conference (pp. 107118).
  • Doll, W.J., & Torkzadeh, G. (1988). The measurement of end-user computing satisfaction: Theoretical and methodological issues. MIS Quarterly, 15(1), 259274.
  • Gazan, R. (2011). Social Q&A. Journal of the American Society for Information Science and Technology, 62(12), 23012312.
  • Jeon, J., Croft, W.B., & Lee, J.H. (2005). Finding semantically similar questions based on their answers. In Proceedings of the 28th annual International Association for Computing Machinery Special Interest Group on Information Retrieval (ACM SIGIR) Conference on Research and Development in Information Retrieval (pp. 617618), Salvador, Brazil. New York: ACM.
  • Jeon, J., Croft, W.B., Lee, J.H., & Park, S. (2006). A framework to predict the quality of answers with non-textual features. In Proceedings of the 29th annual international Association for Computing Machinery Special Interest Group on Information Retrieval (ACM SIGIR) Conference on Research and Development in information retrieval (pp. 228235), Seattle, WA. New York: ACM.
  • Kao, W.-C., Liu, D.-R., & Wang, S.-W. (2010). Expert finding in question-answering websites: A novel hybrid approach. In Proceedings of the Association for Computing Machinery (ACM) Symposium on Applied Computing (pp. 867871), Sierre, Switzerland. New York: ACM.
  • Kim, S., Oh, J.S., & Oh, S. (2007). Best answer selection criteria in a social Q&A site from the user oriented relevance perspective. Proceedings of the American Society for Information Science and Technology, 44(1), 115.
  • Li, F., Tang, Y., Huang, M., & Zhu, X. (2009). Answering opinion questions with random walks on graphs. In Proceedings of the Joint Conference of the 47th annual meeting of the Association for Computational Linguistics (ACL) and the Fourth International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing (AFNLP) (Vol. 2, pp. 737745), Suntec, Singapore. Stroudsburg, PA: Association for Computational Linguistics.
  • Liu, X., Croft, W.B., & Koll, M. (2005). Finding experts in community-based question-answering services. In Proceedings of the 14th Association for Computing Machinery (ACM) International Conference on Information and Knowledge Management (pp. 315316), Bremen, Germany. New York: ACM.
  • Ma, Q., & Tanaka, K. (2005). Topic-structure-based complementary information retrieval and its application. Association for Computing Machinery (ACM) Transactions on Asian Language Information Processing (TALIP), 4(4), 475503.
  • Manning, C.D., Raghavan, P., & Schütze, H. (2008). An introduction to information retrieval. New York: Cambridge University Press.
  • Medina, M.A., & Sanchez, J.A. (2009). OntoQuestion: An ontologies-based framework for factoid question answering on abstracts. In Proceedings of the International Conference on Electronics, Communications and Computers (CONIELECOMP) (pp. 139143).
  • Mitra, M., Singhal, A., & Buckley, C. (1998). Improving automatic query expansion. In Proceedings of the 21st annual international Association for Computing Machinery Special Interest Group on Information Retrieval (ACM SIGIR) Conference on Research and Development in Information Retrieval (pp. 206214), Melbourne, Australia. New York: ACM.
  • O'Hara, K., Alani, H., & Shadbolt, N. (2002). Identifying communities of practice. In Proceeding of the International Federation Information Processing (IFIP) World Computer Congress on Information Systems: The E-Business Challenge (pp. 89102), Montreal, Canada. Deventer: Kluwer B.V.
  • Omiecinski, E.R. (2003). Alternative interest measures for mining associations in databases. IEEE Transactions on Knowledge and Data Engineering, 15(1), 5769.
  • Qu, B., Cong, G., Li, C., Sun, A., & Chen, H. (2012). An evaluation of classification models for question topic categorization. Journal of the American Society for Information Science and Technology. DOI: 10.1002/asi.22611
  • Rijsbergen, C.J.V. (1979). Information retrieval (2nd ed.). London, England: Butterworth-Heinemann.
  • Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513523.
  • Suryanto, M.A., Lim, E.P., Sun, A., & Chiang, R.H.L. (2009). Quality-aware collaborative question answering: Methods and evaluation. In Proceedings of the Second Association for Computing Machinery (ACM) International Conference on Web Search and Data Mining (pp. 142151), Barcelona, Spain. New York: ACM.
  • Wang, D., Li, T., Zhu, S., & Gong, Y. (2011). iHelp: An intelligent online helpdesk system. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41(1), 173182.
  • Weka. (2013). Data mining software in Java. Retrieved from http://www.cs.waikato.ac.nz/ml/weka/
  • Xue, X., Jeon, J., & Croft, W.B. (2008). Retrieval models for question and answer archives. In Proceedings of the 31st annual International Association for Computing Machinery Special Interest Group on Information Retrieval (ACM SIGIR) Conference on Research and Development in Information Retrieval (pp. 475482), Singapore, Singapore. New York: ACM.
  • Zhang, J., Ackerman, M.S., & Adamic, L. (2007). Expertise networks in online communities: Structure and algorithms. In Proceedings of the 16th International Conference on World Wide Web (pp. 221230), Banff, Alberta, Canada.
  • Zhang, M., Song, R., Lin, C., Ma, S., Jiang, Z., Jin, Y. et al. (2002). Expansion-based technologies in finding relevant and new information: THU TREC 2002: Novelty Track Experiments. In Proceedings of the 11th Text Retrieval Conference (pp. 586590).
  • Zhang, Y., Callan, J., & Minka, T. (2002). Novelty and redundancy detection in adaptive filtering. In Proceedings of the 25th annual International Association for Computing Machinery Special Interest Group on Information Retrieval (ACM SIGIR) Conference on Research and Development in Information Retrieval (pp. 8188), Tampere, Finland. New York: ACM.