• 1
    Niculescu, S. I. and K.Gu, Advances in Time-Delay Systems, Springer, Berlin (2004).
  • 2
    Richard, J. P., “Time-delay systems: an overview of some recent advances and open problems,” Automatica, Vol. 39, No. 10, pp. 16671694 (2003).
  • 3
    Bagchi, A., “A martingale approach to state estimation in delay differential systems,” J. Math. Anal. Appl., Vol. 56, pp. 195210 (1976).
  • 4
    Briggs, N. and R.Vinter, “Linear filtering for time-delay systems,” IMA J. Math. Control Inf., Vol. 6, pp. 167178 (1989).
  • 5
    Jiang, Z., W.Gui, Y.Xie, and C.Yang, “Delay-dependent stabilization of singular linear time delay systems based on memory state feedback control,” Proc. 27th Chin. Control Conf., Kunming, China, pp. 767771 (2008).
  • 6
    Kharitonov, V., S.Mondié, and J.Collado, “Exponential estimates for neutral time-delay systems: an LMI approach,” IEEE Trans. Autom. Control, Vol. 50, pp. 666670 (2005).
  • 7
    Park, P., “A delay-dependent stability criterion for system with uncertain time-invairiant delay,” IEEE Trans. Autom. Control, Vol. 44, No. 4, pp. 876877 (1999).
  • 8
    Xu, S. and J.Lam, “Improved delay-dependent stability criteria for time-delay systems,” IEEE Trans. Autom. Control, Vol. 50, No. 3, pp. 384387 (2005).
  • 9
    Fridman, E., M.Dambrine, and N.Yeganefar, “On input-to-state stability of systems with time-delay: a matrix inequalities approach,” Automatica, Vol. 44, pp. 23642369 (2008).
  • 10
    Papachristodoulou, A., “Robust stabilization of nonlinear time delay system: using convex optimization,” Proc. 44th IEEE Conf. Decis. Control Eur. Control Conf., Seville, Spain, pp. 57885793 (2005).
  • 11
    Ge, S., F.Hong, and T.Lee, “Adaptive neural network control of nonlinear systems with unknown time delays,” IEEE Trans. Autom. Control, Vol. 48, pp. 20042010 (2003).
  • 12
    Gong, Q., H.Zhang, C.Song, and D.Liu, “Disturbance decoupling control for a class of nonlinear time-delay systems,” Proc. 6th World Cong. Intell. Control Autom., Dalian, China (2006).
  • 13
    Jiao, X. and T.Shen, “Adaptive feedback control of nonlinear time-delay systems: the Lasalle-Razumikhin-based approach,” IEEE Trans. Autom. Control, Vol. 50, pp. 19091913 (2005).
  • 14
    Wu, W., “Robust linearizing controllers for nonlinear time-delay systems,” IEE Proc. Control Theory Appl., Vol. 146, No. 1, pp. 9197 (1999).
  • 15
    Yu, F., Z.Tian, and S.Shi, “Output feedback stabilization for a class of stochastic time-delay nonlinear systems,” IEEE Trans. Autom. Control, Vol. 50, pp. 847851 (2005).
  • 16
    Zemouche, A., M.Boutayeb, and G. I.Bara, “On observers design for nonlinear time-delay systems,” Proc. 25th Am. Control Conf., Minneapolis, Minnesota, USA (2006).
  • 17
    Wei, X., L.Wu, and N.Chen, “Composite disturbance-observer-based control and H control for nonlinear time-delay systems,” Asian J. Control, Vol. 11, No. 4, pp. 440443 (2009).
  • 18
    Cao, Y. Y. and P. M.Frank, “Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models,” Fuzzy Sets Syst., Vol. 124, pp. 213229 (2001).
  • 19
    Coutinho, D. F. and C. Souza, “Delay-dependent robust stability and L2-gain analysis of a class of nonlinear time-delay systems,” Automatica, Vol. 44, pp. 20062018 (2008).
  • 20
    Gu, K., V. L.Kharitonov, and J.Chen, Stability of Time-Delay Systems, Springer, Berlin (2003).
  • 21
    Mazenca, F. and S. I.Niculescub, “Lyapunov stability analysis for nonlinear delay systems,” Syst. Control Lett., Vol. 42, pp. 245251 (2001).
  • 22
    Nguang, S. K., “Robust stabilization of a class of time-delay nonlinear systems,” IEEE Trans. Autom. Control, Vol. 45, pp. 756762 (2000).
  • 23
    Papachristodoulou, A., “Analysis of nonlinear time-delay systems using the sum of squares decomposition,” Proc. 23rd Am. Control Conf., Boston, MA, pp. 41534158 (2004).
  • 24
    Pasumarthy, R. and C. Y.Kao, “On stability of time-delay Hamiltonian systems analysis,” Proc. 2009 Am. Control Conf., St. Louis, Missouri, USA, pp. 49094914 (2009).
  • 25
    Wang, Y., G.Feng, D.Cheng, and Y.Liu, “Adaptive L2 disturbance attenuation control of multi-machine power systems with SMES units,” Automatica, Vol. 42, No. 7, pp. 11211132 (2006).
  • 26
    Han, Q., “A delay decomposition approach to stability of linear neutral systems,” Proc. 17th World Cong., Int. Federation Autom. Control, Seoul, Korea, Vol. 41, No. 7, pp. 12091218 (2008).
  • 27
    Wang, Y., C.Li, and D.Cheng, “Generalized Hamiltonian realization of time-invariant nonlinear systems,” Automatica, Vol. 39, pp. 14371443 (2003).
  • 28
    Chen, W. and W.Zheng, “Robust stability and H control of uncertain impulsive systems with time-delay,” Automatica, Vol. 45, pp. 109117 (2009).
  • 29
    Boyd, S., L. E.Ghaoui, E.Feron, and V.Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia (1994).
  • 30
    He, Y., M.Wu, J.She, and G.Liu, “Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties,” IEEE Trans. Autom. Control, Vol. 49, pp. 828832 (2004).