Get access

Estimation of nonstrict Archimedean copulas and its application to quantum networks



Bivariate nonstrict Archimedean copulas form a subclass of Archimedean copulas and are able to model the dependence structure of random variables that do not take on low quantiles simultaneously; i.e. their domain includes a set, the so-called zero set, with positive Lebesgue measure but zero probability mass. Standard methods to fit a parametric Archimedean copula, e.g. classical maximum likelihood estimation, are either getting computationally more involved or even fail when dealing with this subclass. We propose an alternative method for estimating the parameter of a nonstrict Archimedean copula that is based on the zero set and the functional form of its boundary curve. This estimator is fast to compute and can be applied to absolutely continuous copulas but also allows singular components. In a simulation study, we compare its performance to that of the standard estimators. Finally, the estimator is applied when modeling the dependence structure of quantities describing the quality of transmission in a quantum network, and it is shown how this model can be used effectively to detect potential intruders in this network. Copyright © 2014 John Wiley & Sons, Ltd.

Get access to the full text of this article