SEARCH

SEARCH BY CITATION

Keywords:

  • hemicellulose;
  • xylose;
  • furfural;
  • pre-treatment of lignocellulosics;
  • acid hydrolysis;
  • cyclodehydration

Abstract

Hemicellulose, the second, most common polysaccharide in nature constitutes approximately 20—35% of lignocellulosic biomass. Effective utilization of biomass, hitherto underutilized, is gaining tremendous importance for the production of energy, fuels, and chemicals. Amongst the vast array of chemicals derived from lignocellulosics, furfural is the key chemical that finds wide applications in oil refining, plastics, pharmaceutical and agrochemical industries. There is no synthetic route for the production of furfural. A few conventional technologies currently in practice for its separation and subsequent isolation are appropriately reviewed. Major disadvantages associated with processes currently used for the production of furfural based on acid-catalyzed hydrolysis have been discussed. A need to develop a process which is devoid of all the shortcomings associated with conventional process is emphasized. Several important aspects of chemistry underlying the acid hydrolysis of xylose are discussed. The importance of myriad pre-treatment steps involved to surmount the physical and chemical barriers and to liberate xylose from the confines of acid-resistant layer of lignin has been emphasized. New developments in the production of furfural from cyclodehydration of xylose using solid acid catalysts in the recent past have been reviewed appropriately in present communication. Finally, the production of furfural and furfuryl alcohol, their domestic market and export in China deserve some coverage and therefore have appropriately been discussed as well. © 2008 Society of Chemical Industry and John Wiley & Sons, Ltd