Formation of branching epithelial trees from unbranched precursors is a common process in animal organogenesis. In humans, for example, this process gives rise to the airways of the lungs, the urine-collecting ducts of the kidneys and the excretory epithelia of the mammary, prostate and salivary glands. Branching in these different organs, and in different animal classes and phyla, is morphologically similar enough to suggest that they might use a conserved developmental programme, while being dissimilar enough not to make it obviously certain that they do. In this article, I review recent discoveries about the molecular regulation of branching morphogenesis in the best-studied systems, and present evidence for and against the idea of there being a highly conserved mechanism. Overall, I come to the tentative conclusion that key mechanisms are highly conserved, at least within vertebrates, but acknowledge that more work needs to be done before the case is proved beyond reasonable doubt. BioEssays 24:937–948, 2002. © 2002 Wiley Periodicals, Inc.