• aging;
  • autophagy;
  • C. elegans;
  • fat;
  • hyperfunction;
  • metabolic syndrome


New C. elegans studies imply that lipases and lipid desaturases can mediate signaling effects on aging. But why might fat homeostasis be critical to aging? Could problems with fat handling compromise health in nematodes as they do in mammals? The study of signaling pathways that control longevity could provide the key to one of the great unsolved mysteries of biology: the mechanism of aging. But as our view of the regulatory pathways that control aging grows ever clearer, the nature of aging itself has, if anything, grown more obscure. In particular, focused investigations of the oxidative damage theory have raised questions about an old assumption: that a fundamental cause of aging is accumulation of molecular damage. Could fat dyshomeostasis instead be critical?