SEARCH

SEARCH BY CITATION

Keywords:

  • chromatin;
  • leukemia;
  • menin;
  • MLL;
  • therapy

Abstract

Mixed lineage leukemia (MLL) fusion protein (FP)-induced acute leukemia is highly aggressive and often refractory to therapy. Recent progress in the field has unraveled novel mechanisms and targets to combat this disease. Menin, a nuclear protein, interacts with wild-type (WT) MLL, MLL-FPs, and other partners such as the chromatin-associated protein LEDGF and the transcription factor C-Myb to promote leukemogenesis. The newly solved co-crystal structure illustrating the menin–MLL interaction, coupled with the role of menin in recruiting both WT MLL and MLL-FPs to target genes, highlights menin as a scaffold protein and a central hub controlling this type of leukemia. The menin/WT MLL/MLL-FP hub may also cooperate with several signaling pathways, including Wnt, GSK3, and bromodomain-containing Brd4-related pathways to sustain MLL-FP-induced leukemogenesis, revealing new therapeutic targets to improve the treatment of MLL-FP leukemias.