- 1
Kitano H. 2002. Systems biology: a brief overview. Science 295: 1662– 4. - 2
Kitano H. 2002. Computational systems biology. Nature 420: 206– 10. - 3
Wolkenhauer O. 2001. Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform 2: 258. - 4
Collinet C, Stöter M, Bradshaw CR, Samusik N, et al. 2010. Systems survey of endocytosis by multiparametric image analysis. Nature 464: 243– 9. - 5
Kohl P, Noble D, Winslow R, Hunter PJ. 2000. Computational modeling of biological systems: tools and visions. Phil Trans R Soc Lond A 358: 579– 610. - 6
Koumoutsakos P, Bayati B, Milde F, Tauriello G. 2011. Particle simulations of morphogenesis. Math Mod Meth Appl Sci 21: 955– 1006. - 7
Hyman AA. 2011. Whither systems biology. Phil Trans R Soc B 366: 3635– 7. - 8
Marquis de Laplace PS. 1902. A Philosophical Essay on Probabilities. New York: John Wiley & Sons.

- 9
Shibata Y, Voeltz GK, Rapoport TA. 2006. Rough sheets and smooth tubules. Cell 126: 435– 9. - 10
Dietrich CF. 1991. Uncertainty, Calibration and Probability: The Statistics of Scientific and Industrial Measurement, 2nd ed. Adam Hilger: Measurement Science and Technology.

- 11
Sbalzarini IF, Mezzacasa A, Helenius A, Koumoutsakos P. 2005. Effects of organelle shape on fluorescence recovery after photobleaching. Biophys J 89: 1482– 92. - 12
Sbalzarini IF, Hayer A, Helenius A, Koumoutsakos P. 2006. Simulations of (an)isotropic diffusion on curved biological surfaces. Biophys J 90: 878– 85. - 13
Axelrod D, Koppel DE, Schlessinger J, Elson E, et al. 1976. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16: 1055– 69. - 14
Lippincott-Schwartz J, Snapp E, Kenworthy A. 2001. Studying protein dynamics in living cells. Nature Rev Mol Cell Biol 2: 444– 56. - 15
Krichevsky O, Bonnet G. 2002. Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65: 251– 97. - 16
Kusumi A, Sako Y, Yamamoto M. 1993. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65: 2021– 40. - 17
Sbalzarini IF, Koumoutsakos P. 2005. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151: 182– 95. - 18
Sbalzarini IF. 2009. *Bioinformatics*, chapter Spatiotemporal Modeling and Simulation in Biology. Singapore: World Scientific. p. 381– 432. - 19
Simon HA. 1962. The architecture of complexity. Proc Am Phil Soc 106: 467– 82.

- 20
Feynman RP. 2000. Feynman Lectures on Computation. Boulder, CO (USA): Westview Press.

- 21
Li M, Vitányi PMB. 2008. An Introduction to Kolmogorov Complexity and Its Applications, 3rd ed. Heidelberg, Germany: Springer. - 22
Harel D, Feldman Y. 2004. Algorithmics: The Spirit of Computing, 3rd ed. Boston, USA: Addison Wesley.

- 23
Müller J, Kuttler C, Hense BA, Rothballer M, et al. 2006. Cell-cell communication by quorum sensing and dimension-reduction. J Math Biol 53: 672– 702. - 24
Weinan E. 2011. Principles of Multiscale Modeling. Cambridge, UK: Cambridge University Press.

- 25
Schnell S, Maini P, Newman SA, Newman T. 2008. Multiscale Modeling of Developmental Systems. Waltham, Massachusetts, USA: Academic Press.

- 26
Bénichou O, Chevalier C, Klafter J, Meyer B, et al. 2010. Geometry-controlled kinetics. Nat Chem 2: 472– 7. - 27
Schrödinger E. 1948. What is Life? The Physical Aspect of the Living Cell. Cambridge, UK: Cambridge University Press.

- 28
Loverdo C, Bénichou O, Moreau M, Voituriez R. 2008. Enhanced reaction kinetics in biological cells. Nat Phys 4: 134– 7. - 29
Grima R. 2009. Noise-induced breakdown of the Michaelis-Menten equation in steady-state conditions. Phys Rev Lett 102: 218103. - 30
Ramaswamy R, Sbalzarini IF, González-Segredo N. 2011. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of nonlinear chemical reaction networks. PLoS ONE 6: e16045. - 31
Ramaswamy R, González-Segredo N, Sbalzarini IF, Grima R. 2012. Discreteness-induced concentraiton inversion in mesoscopic chemical systems. Nat Commun 3: 779. - 32
Ramaswamy R, Sbalzarini IF. 2011. Intrinsic noise alters the frequency spectrum of mesoscopic oscillatory chemical reaction systems. Sci Rep 1: 154. - 33
Howard J, Grill SW, Bois JS. 2011. Turing's next steps: the mechanochemical basis of morphogenesis. Nat Rev Mol Cell Bio 12: 392– 8. - 34
Marquez-Lago TT, Stelling J. 2010. Counter-intuitive stochastic behavior of simple gene circuits with negative feedback. Biophys J 98: 1742– 50. - 35
Hecht E. 2001. Optics, 4th ed. Boston, USA: Addison Wesley.

- 36
Shafer G. 1976. A Mathematical Theory of Evidence. Princeton, USA: Princeton University Press.

- 37
Halpern JY. 2005. Reasoning About Uncertainty. Cambridge, Massachusetts, USA: MIT Press.

- 38
Cardinale J, Rauch A, Barral Y, Székely G, et al. 2009. Bayesian image analysis with on-line confidence estimates and its application to microtubule tracking. In *Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI)*. Boston, USA: IEEE. p. 1091–4.

- 39
Helmuth JA, Burckhardt CJ, Greber UF, Sbalzarini IF. 2009. Shape reconstruction of subcellular structures from live cell fluorescence microscopy images. J Struct Biol 167: 1– 10. - 40
Helmuth JA, Sbalzarini IF. 2009. Deconvolving active contours for fluorescence microscopy images. In *Proceedings of the International Symposium on Visual Computing (ISVC)*. Vol. 5875 of Lecture Notes in Computer Science. Las Vegas, USA: Springer. p. 544–53.

- 41
Danuser G. 2011. Computer vision in cell biology. Cell 147: 973– 8. - 42
Cardinale J, Paul G, Sbalzarini IF. 2012. Discrete region competition for unknown numbers of connected regions. IEEE Trans Image Process 21: 3531– 45. - 43
Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, et al. 2012. Biological imaging software tools. Nat Methods 9: 697– 710. - 44
Ghochani M, Nulton JD, Salamon P, Frey TG, et al. 2010. Tensile forces and shape entropy explain observed crista structure in mitochondria. Biophys J 99: 3244– 54. - 45
Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12: 30– 9. - 46
Murray JD. 1993. Mathematical Biology. Vol. 19, 2nd ed. Heidelberg: Springer Biomathematics Texts.

- 47
Meinhardt H, Prusinkiewicz P, Fowler DR. 1998. The Algorithmic Beauty of Sea Shells. Heidelberg, Germany: Springer-Verlag Telos. - 48
Burrage K, Hancock J, Leier A, Nicolau DV, Jr. 2007. Modelling and simulation techniques for membrane biology. Brief Bioinform 8: 234– 44. - 49
Ockham W, 1495 Quaestiones et decisiones in quattuor libros Sententiarum Petri Lombardi. Lugd, ed.

- 50
Saxton MJ. 2001. Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. Biophys J 81: 2226– 40. - 51
Slepchenko BM, Schaff JC, Carson JH, Loew LM. 2002. Computational cell biology: spatiotemporal simulation of cellular events. Annu Rev Biophys Biomol Struct 31: 423– 41. - 52
Kerr RA, Bartol TM, Kaminsky B, Dittrich M, et al. 2008. Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM J Sci Comput 30: 3126– 49. - 53
Moraru II, Schaff JC, Slepchenko BM, Blinov M, et al. 2008. The virtual cell modeling and simulation software environment. IET Syst Biol 2: 352– 62. - 54
Plimpton SJ, Slepoy A. 2005. Microbial cell modeling via reacting diffusive particles. J Phys Conf Ser 16: 305– 9. - 55
Andrews SS. 2012. Spatial and stochastic cellular modeling with the Smoldyn simulator. In van Helden J, ed; Bacterial Molecular Networks: Methods and Protocols. Vol. 804, chap. 26. Heidelberg, Germany: Springer. p. 519– 42. - 56
Degond P, Mas-Gallic S. 1989. The weighted particle method for convection-diffusion equations. Part 1. The case of an isotropic viscosity. Math Comput 53: 485– 507. - 57
de Berg M, van Krefeld M, Overmars M, Schwarzkopf O. 2000. Computational Geometry: Algorithms and Applications, 2nd ed. Heidelberg, Germany: Springer. - 58
de Loera JA, Rambau J, Santos F. 2010. Triangulations. Heidelberg, Germany Springer. - 59
Novak IL, Gao F, Choi YS, Resasco D, et al. 2007. Diffusion on a curved surface coupled to diffusion in the volume: application to cell biology. J Comput Phys 226: 1271– 90. - 60
Sethian JA. 1999. Level Set Methods and Fast Marching Methods. Cambridge, UK: Cambridge University Press.

- 61
Du Q, Liu C, Wang X. 2004. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J Comput Phys 198: 450– 68. - 62
Bergdorf M, Sbalzarini IF, Koumoutsakos P. 2010. A Lagrangian particle method for reaction-diffusion systems on deforming surfaces. J Math Biol 61: 649– 63. - 63
Bergdorf M, Milde F, Koumoutsakos P. 2012. Particle simulations of growth: application to tumorigenesis. In Jackson TL, ed; Modeling Tumor Vasculature: Molecular, Cellular, and Tissue Level 261 Aspects and Implications, chap. 11. New York: Springer. p. 261– 303. - 64
Sbalzarini IF. 2009. Analysis Modeling & Simulation of Diffusion Processes in Cell Biology. Saarbrucken, Germany: VDM Publishing. p. 388.

- 65
Yakimovich A, Gumpert H, Burckhardt CJ, Lütschg VA, et al. 2012. Cell-free transmission of human adenovirus by passive mass transfer in cell culture simulated in a computer model. J Virol 86: 10123– 37. - 66
Ljung L. 1999. System Identification: Theory for the User. Upper Saddle River, New Jersey, USA: Prentice Hall. - 67
Tarantola A. 2004. Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia, Pennsylvania, United States: SIAM.

- 68
Aster RC, Borchers B, Thurber CH. 2012. Parameter Estimation and Inverse Problems, 2nd ed. Waltham, Massachusetts, USA: Academic Press.

- 69
Nelder JA, Mead R. 1965. A simplex method for function minimization. Comput J 7: 308– 13. - 70
Saltelli A, Chan K, Scott EM. 2000. Sensitivity Analysis. Hoboken, New Jersey, USA: John Wiley & Sons.

- 71
Saltelli A, Ratto M, Andres T, Campolongo F, et al. 2008. Global Sensitivity Analysis: The Primer, 1st ed. Chichester, England: John Wiley & Sons.

- 72
Carley KM. 1996. Validating computational models. *Technical report*, Carnegie Mellon University, Department of Social and Decision Sciences.

- 73
Tomita M. 2001. Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol 19: 205– 10. - 74
The 2020 Science Group. 2005. *Towards 2020 Science*. Microsoft Research.

- 75
Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, et al. 2012. A whole-cell computational model predicts phenotype from genotype. Cell 150: 389– 401. - 76
Sbalzarini IF, Walther JH, Bergdorf M, Hieber SE, et al. 2006. PPM – a highly efficient parallel particle-mesh library for the simulation of continuum systems. J Comput Phys 215: 566– 88.