SEARCH

SEARCH BY CITATION

References

  • 1
    Kitano H. 2002. Systems biology: a brief overview. Science 295: 16624.
  • 2
    Kitano H. 2002. Computational systems biology. Nature 420: 20610.
  • 3
    Wolkenhauer O. 2001. Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform 2: 258.
  • 4
    Collinet C, Stöter M, Bradshaw CR, Samusik N, et al. 2010. Systems survey of endocytosis by multiparametric image analysis. Nature 464: 2439.
  • 5
    Kohl P, Noble D, Winslow R, Hunter PJ. 2000. Computational modeling of biological systems: tools and visions. Phil Trans R Soc Lond A 358: 579610.
  • 6
    Koumoutsakos P, Bayati B, Milde F, Tauriello G. 2011. Particle simulations of morphogenesis. Math Mod Meth Appl Sci 21: 9551006.
  • 7
    Hyman AA. 2011. Whither systems biology. Phil Trans R Soc B 366: 36357.
  • 8
    Marquis de Laplace PS. 1902. A Philosophical Essay on Probabilities. New York: John Wiley & Sons.
  • 9
    Shibata Y, Voeltz GK, Rapoport TA. 2006. Rough sheets and smooth tubules. Cell 126: 4359.
  • 10
    Dietrich CF. 1991. Uncertainty, Calibration and Probability: The Statistics of Scientific and Industrial Measurement, 2nd ed. Adam Hilger: Measurement Science and Technology.
  • 11
    Sbalzarini IF, Mezzacasa A, Helenius A, Koumoutsakos P. 2005. Effects of organelle shape on fluorescence recovery after photobleaching. Biophys J 89: 148292.
  • 12
    Sbalzarini IF, Hayer A, Helenius A, Koumoutsakos P. 2006. Simulations of (an)isotropic diffusion on curved biological surfaces. Biophys J 90: 87885.
  • 13
    Axelrod D, Koppel DE, Schlessinger J, Elson E, et al. 1976. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16: 105569.
  • 14
    Lippincott-Schwartz J, Snapp E, Kenworthy A. 2001. Studying protein dynamics in living cells. Nature Rev Mol Cell Biol 2: 44456.
  • 15
    Krichevsky O, Bonnet G. 2002. Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65: 25197.
  • 16
    Kusumi A, Sako Y, Yamamoto M. 1993. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65: 202140.
  • 17
    Sbalzarini IF, Koumoutsakos P. 2005. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151: 18295.
  • 18
    Sbalzarini IF. 2009. Bioinformatics, chapter Spatiotemporal Modeling and Simulation in Biology. Singapore: World Scientific. p. 381432.
  • 19
    Simon HA. 1962. The architecture of complexity. Proc Am Phil Soc 106: 46782.
  • 20
    Feynman RP. 2000. Feynman Lectures on Computation. Boulder, CO (USA): Westview Press.
  • 21
    Li M, Vitányi PMB. 2008. An Introduction to Kolmogorov Complexity and Its Applications, 3rd ed. Heidelberg, Germany: Springer.
  • 22
    Harel D, Feldman Y. 2004. Algorithmics: The Spirit of Computing, 3rd ed. Boston, USA: Addison Wesley.
  • 23
    Müller J, Kuttler C, Hense BA, Rothballer M, et al. 2006. Cell-cell communication by quorum sensing and dimension-reduction. J Math Biol 53: 672702.
  • 24
    Weinan E. 2011. Principles of Multiscale Modeling. Cambridge, UK: Cambridge University Press.
  • 25
    Schnell S, Maini P, Newman SA, Newman T. 2008. Multiscale Modeling of Developmental Systems. Waltham, Massachusetts, USA: Academic Press.
  • 26
    Bénichou O, Chevalier C, Klafter J, Meyer B, et al. 2010. Geometry-controlled kinetics. Nat Chem 2: 4727.
  • 27
    Schrödinger E. 1948. What is Life? The Physical Aspect of the Living Cell. Cambridge, UK: Cambridge University Press.
  • 28
    Loverdo C, Bénichou O, Moreau M, Voituriez R. 2008. Enhanced reaction kinetics in biological cells. Nat Phys 4: 1347.
  • 29
    Grima R. 2009. Noise-induced breakdown of the Michaelis-Menten equation in steady-state conditions. Phys Rev Lett 102: 218103.
  • 30
    Ramaswamy R, Sbalzarini IF, González-Segredo N. 2011. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of nonlinear chemical reaction networks. PLoS ONE 6: e16045.
  • 31
    Ramaswamy R, González-Segredo N, Sbalzarini IF, Grima R. 2012. Discreteness-induced concentraiton inversion in mesoscopic chemical systems. Nat Commun 3: 779.
  • 32
    Ramaswamy R, Sbalzarini IF. 2011. Intrinsic noise alters the frequency spectrum of mesoscopic oscillatory chemical reaction systems. Sci Rep 1: 154.
  • 33
    Howard J, Grill SW, Bois JS. 2011. Turing's next steps: the mechanochemical basis of morphogenesis. Nat Rev Mol Cell Bio 12: 3928.
  • 34
    Marquez-Lago TT, Stelling J. 2010. Counter-intuitive stochastic behavior of simple gene circuits with negative feedback. Biophys J 98: 174250.
  • 35
    Hecht E. 2001. Optics, 4th ed. Boston, USA: Addison Wesley.
  • 36
    Shafer G. 1976. A Mathematical Theory of Evidence. Princeton, USA: Princeton University Press.
  • 37
    Halpern JY. 2005. Reasoning About Uncertainty. Cambridge, Massachusetts, USA: MIT Press.
  • 38
    Cardinale J, Rauch A, Barral Y, Székely G, et al. 2009. Bayesian image analysis with on-line confidence estimates and its application to microtubule tracking. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI). Boston, USA: IEEE. p. 1091–4.
  • 39
    Helmuth JA, Burckhardt CJ, Greber UF, Sbalzarini IF. 2009. Shape reconstruction of subcellular structures from live cell fluorescence microscopy images. J Struct Biol 167: 110.
  • 40
    Helmuth JA, Sbalzarini IF. 2009. Deconvolving active contours for fluorescence microscopy images. In Proceedings of the International Symposium on Visual Computing (ISVC). Vol. 5875 of Lecture Notes in Computer Science. Las Vegas, USA: Springer. p. 544–53.
  • 41
    Danuser G. 2011. Computer vision in cell biology. Cell 147: 9738.
  • 42
    Cardinale J, Paul G, Sbalzarini IF. 2012. Discrete region competition for unknown numbers of connected regions. IEEE Trans Image Process 21: 353145.
  • 43
    Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, et al. 2012. Biological imaging software tools. Nat Methods 9: 697710.
  • 44
    Ghochani M, Nulton JD, Salamon P, Frey TG, et al. 2010. Tensile forces and shape entropy explain observed crista structure in mitochondria. Biophys J 99: 324454.
  • 45
    Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12: 309.
  • 46
    Murray JD. 1993. Mathematical Biology. Vol. 19, 2nd ed. Heidelberg: Springer Biomathematics Texts.
  • 47
    Meinhardt H, Prusinkiewicz P, Fowler DR. 1998. The Algorithmic Beauty of Sea Shells. Heidelberg, Germany: Springer-Verlag Telos.
  • 48
    Burrage K, Hancock J, Leier A, Nicolau DV, Jr. 2007. Modelling and simulation techniques for membrane biology. Brief Bioinform 8: 23444.
  • 49
    Ockham W, 1495 Quaestiones et decisiones in quattuor libros Sententiarum Petri Lombardi. Lugd, ed.
  • 50
    Saxton MJ. 2001. Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. Biophys J 81: 222640.
  • 51
    Slepchenko BM, Schaff JC, Carson JH, Loew LM. 2002. Computational cell biology: spatiotemporal simulation of cellular events. Annu Rev Biophys Biomol Struct 31: 42341.
  • 52
    Kerr RA, Bartol TM, Kaminsky B, Dittrich M, et al. 2008. Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM J Sci Comput 30: 312649.
  • 53
    Moraru II, Schaff JC, Slepchenko BM, Blinov M, et al. 2008. The virtual cell modeling and simulation software environment. IET Syst Biol 2: 35262.
  • 54
    Plimpton SJ, Slepoy A. 2005. Microbial cell modeling via reacting diffusive particles. J Phys Conf Ser 16: 3059.
  • 55
    Andrews SS. 2012. Spatial and stochastic cellular modeling with the Smoldyn simulator. In van Helden J, ed; Bacterial Molecular Networks: Methods and Protocols. Vol. 804, chap. 26. Heidelberg, Germany: Springer. p. 51942.
  • 56
    Degond P, Mas-Gallic S. 1989. The weighted particle method for convection-diffusion equations. Part 1. The case of an isotropic viscosity. Math Comput 53: 485507.
  • 57
    de Berg M, van Krefeld M, Overmars M, Schwarzkopf O. 2000. Computational Geometry: Algorithms and Applications, 2nd ed. Heidelberg, Germany: Springer.
  • 58
    de Loera JA, Rambau J, Santos F. 2010. Triangulations. Heidelberg, Germany Springer.
  • 59
    Novak IL, Gao F, Choi YS, Resasco D, et al. 2007. Diffusion on a curved surface coupled to diffusion in the volume: application to cell biology. J Comput Phys 226: 127190.
  • 60
    Sethian JA. 1999. Level Set Methods and Fast Marching Methods. Cambridge, UK: Cambridge University Press.
  • 61
    Du Q, Liu C, Wang X. 2004. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J Comput Phys 198: 45068.
  • 62
    Bergdorf M, Sbalzarini IF, Koumoutsakos P. 2010. A Lagrangian particle method for reaction-diffusion systems on deforming surfaces. J Math Biol 61: 64963.
  • 63
    Bergdorf M, Milde F, Koumoutsakos P. 2012. Particle simulations of growth: application to tumorigenesis. In Jackson TL, ed; Modeling Tumor Vasculature: Molecular, Cellular, and Tissue Level 261 Aspects and Implications, chap. 11. New York: Springer. p. 261303.
  • 64
    Sbalzarini IF. 2009. Analysis Modeling & Simulation of Diffusion Processes in Cell Biology. Saarbrucken, Germany: VDM Publishing. p. 388.
  • 65
    Yakimovich A, Gumpert H, Burckhardt CJ, Lütschg VA, et al. 2012. Cell-free transmission of human adenovirus by passive mass transfer in cell culture simulated in a computer model. J Virol 86: 1012337.
  • 66
    Ljung L. 1999. System Identification: Theory for the User. Upper Saddle River, New Jersey, USA: Prentice Hall.
  • 67
    Tarantola A. 2004. Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia, Pennsylvania, United States: SIAM.
  • 68
    Aster RC, Borchers B, Thurber CH. 2012. Parameter Estimation and Inverse Problems, 2nd ed. Waltham, Massachusetts, USA: Academic Press.
  • 69
    Nelder JA, Mead R. 1965. A simplex method for function minimization. Comput J 7: 30813.
  • 70
    Saltelli A, Chan K, Scott EM. 2000. Sensitivity Analysis. Hoboken, New Jersey, USA: John Wiley & Sons.
  • 71
    Saltelli A, Ratto M, Andres T, Campolongo F, et al. 2008. Global Sensitivity Analysis: The Primer, 1st ed. Chichester, England: John Wiley & Sons.
  • 72
    Carley KM. 1996. Validating computational models. Technical report, Carnegie Mellon University, Department of Social and Decision Sciences.
  • 73
    Tomita M. 2001. Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol 19: 20510.
  • 74
    The 2020 Science Group. 2005. Towards 2020 Science. Microsoft Research.
  • 75
    Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, et al. 2012. A whole-cell computational model predicts phenotype from genotype. Cell 150: 389401.
  • 76
    Sbalzarini IF, Walther JH, Bergdorf M, Hieber SE, et al. 2006. PPM – a highly efficient parallel particle-mesh library for the simulation of continuum systems. J Comput Phys 215: 56688.