• automation;
  • cardiomyocytes;
  • drug safety assessment;
  • human embryonic stem cells;
  • human induced pluripotent stem cells


The emphasis in human pluripotent stem cell (hPSC) technologies has shifted from cell therapy to in vitro disease modelling and drug screening. This review examines why this shift has occurred, and how current technological limitations might be overcome to fully realise the potential of hPSCs. Details are provided for all disease-specific human induced pluripotent stem cell lines spanning a dozen dysfunctional organ systems. Phenotype and pharmacology have been examined in only 17 of 63 lines, primarily those that model neurological and cardiac conditions. Drug screening is most advanced in hPSC-cardiomyocytes. Responses for almost 60 agents include examples of how careful tests in hPSC-cardiomyocytes have improved on existing in vitro assays, and how these cells have been integrated into high throughput imaging and electrophysiology industrial platforms. Such successes will provide an incentive to overcome bottlenecks in hPSC technology such as improving cell maturity and industrial scalability whilst reducing cost.