Get access

Whole chromosome aneuploidy: Big mutations drive adaptation by phenotypic leap

Authors

  • Guangbo Chen,

    Corresponding author
    1. Stowers Institute for Medical Research, Kansas City, MO, USA
    2. Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
    • Stowers Institute for Medical Research, Kansas City, MO, USA
    Search for more papers by this author
  • Boris Rubinstein,

    1. Stowers Institute for Medical Research, Kansas City, MO, USA
    Search for more papers by this author
  • Rong Li

    1. Stowers Institute for Medical Research, Kansas City, MO, USA
    2. Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
    Search for more papers by this author

Abstract

Despite its widespread existence, the adaptive role of aneuploidy (the abnormal state of having an unequal number of different chromosomes) has been a subject of debate. Cellular aneuploidy has been associated with enhanced resistance to stress, whereas on the organismal level it is detrimental to multicellular species. Certain aneuploid karyotypes are deleterious for specific environments, but karyotype diversity in a population potentiates adaptive evolution. To reconcile these paradoxical observations, this review distinguishes the role of aneuploidy in cellular versus organismal evolution. Further, it proposes a population genetics perspective to examine the behavior of aneuploidy on a populational versus individual level. By altering the copy number of a significant portion of the genome, aneuploidy introduces large phenotypic leaps that enable small cell populations to explore a wide phenotypic landscape, from which adaptive traits can be selected. The production of chromosome number variation can be further increased by stress- or mutation-induced chromosomal instability, fueling rapid cellular adaptation.

Get access to the full text of this article

Ancillary