SEARCH

SEARCH BY CITATION

References

  • Adler, W. and Lausen, B. (2007). Bootstrap estimated sensitivity, specificity and ROC curve. Tech. rep., Department of Biometry and Epidemiology, University Erlangen-Nuremberg.
  • Akritas, M. G. (1994). Nearest neighbor estimation of a bivariate distribution under random censoring. The Annals of Statistics 22, 12991327.
  • Bartfay, E., Mackillop, W. J., and Pater, J. L. (2006). Comparing the predictive value of neural network models to logistic regression models on the risk of death for small-cell lung cancer patients. European Journal of Cancer Care 15, 115124.
  • Bernardo, J. M. and Smith, A. F. (2000). Bayesian theory. Wiley Series in Probability and Statistics. Chichester: Wiley.
  • Binder, H. and Schumacher, M. (2008). Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples. Statistical Applications in Genetics and Molecular Biology 7, Article 12.
  • Breiman, L. (2001a). Random forests. Machine Learning 45, 532.
  • Breiman, L. (2001b). Statistical modeling: The two cultures. (With comments and a rejoinder). Statistical Sciences 16, 199231.
  • Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and regression trees. The Wadsworth Statistics/Probability Series. Belmont, California.
  • Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review 78, 13.
  • Cai, T., Pepe, M. S., Zheng, Y., Lumley, T., and Jenny, N. S. (2006). The sensitivity and specificity of markers for event times. Biostatistics 7, 182197.
  • Cantor, S. B. and Ganiats, T. G. (1999). Incremental cost-effectiveness analysis: the optimal strategy depends on the strategy set. Journal of Clinical Epidemiology 52, 517522.
  • Claeskens, G. and Hjort, N. L. (2003). The focused information criterion. (With discussions and a rejoinder by the authors.) Journal of the American Statistical Association 98, 900945.
  • Dabrowska, D. M. (1987). Non-parametric regression with censored survival time data. Scandinavian Journal of Statistics 14, 181197.
  • Efron, B. and Tibshirani, R. (1997). Improvement on cross-validation: The 0.632+ bootstrap method. Journal of the American Statistical Association 92, 548560.
  • Fawcett, T. (2004). Roc graphs: Notes and practical considerations for researchers. Tech. rep., HP Laboratories, Palo Alto, USA.
  • Gail, M. H. and Pfeiffer, R. M. (2005). On criteria for evaluating models of absolute risk. Biostatistics 6, 227239.
  • Gerds, T. A. and Schumacher, M. (2006). Consistent estimation of the expected Brier score in general survival models with right-censored event times. Biometrical Journal 48, 10291040.
  • Gerds, T. A. and Schumacher, M. (2007). On Efron type measures of prediction error for survival analysis. Biometrics 63, 12831287.
  • Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association 102, 359378.
  • Graf, E., Schmoor, C., Sauerbrei, W. F., and Schumacher, M. (1999). Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine 18, 25292545.
  • Graf, E. and Schumacher, M. (1995). An investigation on measures of explained variation in survival analysis. The Statistician 44, 497507.
  • Greene, K. L., Meng, M. V., Elkin, E. P., Cooperberg, M. R., Pasta, D. J., Kattan, M. W., Wallace, K., and Carroll, P. R. (2004). Validation of the Kattan preoperative nomogram for prostate cancer recurrence using a community based cohort: results from cancer of the prostate strategic urological research endeavor (capsure). Journal of Urology 171, 22552259.
  • Greenhouse, S. W., Cornfield, J., and Homburger, F. (1950). The Youden index: letters to the editor. Cancer 3, 10971101.
  • Greenland, S. (2008). The need for reorientation toward cost-effective prediction: Comments on ‘evaluating the added predictive ability of a new marker: From area under the roc curve to reclassification and beyond’ by m.j. pencina et al., statistics in medicine. Statistics in Medicine 27, 199206.
  • Guggenmoos-Holzmann, I. and van Houwelingen, H. C. (2000). The (in)validity of sensitivity and specificity. Statistics in Medicine 19, 17831792.
  • Habbema, J. D. and Hilden, J. (1981). The measurement of performance in probabilistic diagnosis. IV. Utility considerations in therapeutics and prognostics. Methods for Information in Medicine 20, 8096.
  • Hand, D. (2001). Measuring diagnostic accuracy of statistical prediction rules. Statistica Neerlandica 55, 316.
  • Hand, D. J. (1997). Construction and Assessment of Classification Rules. John Wiley, Chichester.
  • Hand, D J. and Till, R. J. (2001). A simple generalisation of the area under the roc curve for multiple class classification problems. Machine Learning 45, 171186.
  • Hanley, J. A. and McNeil, B. J. (1983). A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148, 839843.
  • Harrell, F. E. (2001). Regression modeling strategies. With applications to linear models, logistic regression and survival analysis. Springer Series in Statistics. New York, NY: Springer.
  • Heagerty, P. J., Lumley, T., and Pepe, M. S. (2000). Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56, 337344.
  • Heagerty, P. J. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. Biometrics 61, 92105.
  • Henke, M., Laszig, R., Rube, C., Schafer, U., Haase, K. D., Schilcher, B., Mose, S., Beer, K. T., Burger, U., Dougherty, C., and Frommhold, H. (2003). Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet 362, 12551260.
  • Henke, M., Mattern, D., Pepe, M., Bëzay, C., Weissenberger, C., Werner, M., and Pajonk, F. (2006). Do erythropoietin receptors on cancer cells explain unexpected clinical findings? Journal of Clinical Oncology 24, 47084713.
  • Hilden, J. (1991). The area under the ROC curve and its competitors. Medical Decision Making 11, 95101.
  • Hilden, J. (2000). Prevalence-free utility-respecting summary indices of diagnostic power do not exist. Statistics in Medicine 19, 431440.
  • Hilden, J. (2005). What properties should an overall measure of test performance possess? Clinical Chemistry 51, 471; author reply 471–472.
  • Hilden, J., Habbema, J. D. F., and Bjerregaard, B. (1978). The measurement of performance in probabilistic diagnosis – III. Methods based on continuous functions of the diagnostic probabilities. Methods of Information in Medicine 17, 238246.
  • Holländer, N. and Schumacher, M. (2006). Estimating the functional form of a continuous covariate's effect on survival time. Computational Statistics and Data Analysis 50, 11311151.
  • Hsieh, F. and Turnbull, B. W. (1996). Nonparametric methods for evaluating diagnostic tests. Statistica Sinica 6, 4762.
  • Huang, Y., Pepe, M. S., and Feng, Z. (2007). Evaluating the predictiveness of a continuous marker. Biometrics 63, 11811188.
  • IPI (1993). A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. New England Journal of Medicine 329, 987994.
  • Jiang, W. and Simon, R. (2007). A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification. Statistics in Medicine 26, 53205334.
  • Kattan, M. (2002). Statistical prediction models, artificial neural networks, and the sophism ‘I am a patient, not a statistic’. Journal of Clinical Oncology 20, 885887.
  • Kattan, M. W. (2003). Judging new markers by their ability to improve predictive accuracy. Journal of the National Cancer Institute 95, 634635.
  • Kattan, M. W., Zelefsky, M. J., Kupelian, P. A., Scardino, P. T., Fuks, Z., and Leibel, S. A. (2000). Pretreatment nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer. Journal of Clinical Oncology 18, 33523359.
  • Korn, E. L. and Simon, R. (1990). Measures of explained variation for survival data. Statistics in Medicine 9, 487503.
  • Kvalseth, T. O. (1985). Cautionary note about R2. The American Statistician 39, 279285.
  • Lausen, B. and Schumacher, M. (1992). Maximally selected rank statistics. Biometrics 48, 7385.
  • Markowetz, F. and Spang, R. (2005). Molecular diagnosis. Classification, model selection and performance evaluation. Methods for Information in Medicine 44, 438443.
  • Matheson, J. and Winkler (1976). Scoring rules for continuous probability distributions. Management Science 22, 10871096.
  • McClish, D. K. (1989). Analyzing a portion of the ROC curve. Medical Decision Making 9, 190195.
  • Miller, R. and Siegmund, D. (1982). Maximally selected chi square statistics. Biometrics 38, 10111016.
  • Moskowitz, C. S. and Pepe, M. S. (2004a). Quantifying and comparing the accuracy of binary biomarkers when predicting a failure time outcome. Statistics in Medicine 23, 15551570.
  • Moskowitz, C. S. and Pepe, M. S. (2004b). Quantifying and comparing the predictive accuracy of continuous prognostic factors for binary outcomes. Biostatistics 5, 113127.
  • Obuchowski, N. A. (2003). Receiver operating characteristic curves and their use in radiology. Radiology 229, 38.
  • Pencina, M. J., Agostino, R. B. S. D., Agostino, R. B. J. D., and Vasan, R. S. (2008). Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Statistics in Medicine 27, 157172.
  • Pepe, M. S. (2003). The statistical evaluation of medical tests for classification and prediction. Oxford University Press.
  • Pepe, M. S., Zheng, Y., and Jin, Y. (2008). Evaluating the roc performance of markers for future events. Lifetime Data Analysis 14, 86113.
  • Perkins, N. J. and Schisterman, E. F. (2006). The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. American Journal of Epidemiology 163, 670675.
  • Redelmeier, D., Bloch, D., and Hickam, D. (1991). Assessing predictive accuracy: how to compare Brier scores. Journal of Clinical Epidemiology 44, 11411146.
  • Ruschhaupt, M., Huber, W., Poustka, A., and Mansmann, U. (2004). A compendium to ensure computational reproducibility in high-dimensional classification tasks. Statistical Applications in Genetics and Molecular Biology 3, Article 37.
  • Savage, L. J. (1971). Elicitation of personal probabilities and expectations. Journal of the American Statistical Association 66, 783801.
  • Schisterman, E. F., Faraggi, D., Reiser, B., and Hu, J. (2008). Youden Index and the optimal threshold for markers with mass at zero. Statistics in Medicine 27, 297315.
  • Schoop, R., Graf, E., and Schumacher, M. (2008). Quantifying the predictive performance of prognostic models for censored survival data with time-dependent covariates. Biometrics 64, 603610.
  • Schumacher, M., Binder, H., and Gerds, T. (2007). Assessment of survival prediction models based on microarray data. Bioinformatics 23, 17681774.
  • Schumacher, M., Graf, E., and Gerds, T.A. (2003). How to assess prognostic models for survival data: a case study in oncology. Methods for Information in Medicine 42, 564571.
  • Schumacher, M., Holländer, N., Schwarzer, G., and Sauerbrei, W. (2006). Prognostic factor studies. In: J. Crowley and D. Pauler Ankerst (eds.), Handbook of Statistics in Clinical Oncology. Second Edition, Chapman & Hall, 289–333.
  • Segal, M. R. (2006). Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited. Biostatistics 7, 268285.
  • Shapiro, D. E. (1999). The interpretation of diagnostic tests. Statistical Methods in Medical Research 8, 113134.
  • Simon, R. (2005a). Development and validation of therapeutically relevant multi-gene biomarker classifiers. Journal of the National Cancer Institute 97, 866867.
  • Simon, R. (2005b). Roadmap for developing and validating therapeutically relevant genomic classifiers. Journal of Clinical Oncology 23, 73327341.
  • Steyerberg, E. W., Bleeker, S. E., Moll, H. A., Grobbee, D. E., and Moons, K. G. M. (2003). Internal and external validation of predictive models: a simulation study of bias and precision in small samples. Journal of Clinical Epidemiology 56, 441447.
  • Steyerberg, E. W., Harrell, F. E. J., Borsboom, G. J., Eijkemans, M. J., Vergouwe, Y., and Habbema, J. D. (2001). Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. Journal of Clinical Epidemiology 54, 774781.
  • Struthers, C. A. and Kalbfleisch, J. D. (1986). Misspecified proportional hazard models. Biometrika 73, 363369.
  • Thompson, I. M., Ankerst, D. P., Chi, C., Goodman, P. J., Tangen, C. M., Lucia, M. S., Feng, Z., Parnes, H. L., and Coltman, C. A. J. (2006). Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. Journal of the National Cancer Institute 98, 529534.
  • Tian, L., Cai, T., and Wei, L. J. (2007). Identifying patients who need additional biomarkers for better prediction of health outcome or diagnosis of clinical phenotype. Tech. rep., Harvard University Biostatistics Working Paper Series.
  • Uno, H., Cai, T., Tian, L., and Wei, L. (2007). Evaluating prediction rules for t -year survivors with censored regression models. Journal of the American Statistical Association 102, 527537.
  • Van der Laan, M. J. and Robins, J. M. (2003). Unified Methods for Censored Longitudinal Data and Causality. Springer.
  • Ware, J. H. (2006). The limitations of risk factors as prognostic tools. New England Journal of Medicine 355, 26152617.
  • Wehberg, S. and Schumacher, M. (2004). A comparison of nonparametric error rate estimation methods in classification problems. Biometrical Journal 46, 3547.
  • Youden, W. J. (1950). Index for rating diagnostic tests. Cancer 3, 3235.