SEARCH

SEARCH BY CITATION

References

  • Au, K., Lin, R. and Foulkes, A. S. (2011). Mixture modeling as an exploratory framework for genotype-trait associations. Journal of the Royal Statistical Society Series C 60, 355375.
  • Bastone, L., Reilly, M., Rader, D. and Foulkes, A. (2004). MDR and PRP: a comparison of methods for high-order genotype–phenotype associations. Human Heredity 58, 8292.
  • Bentler, P. M. and Weeks, D. G. (1980). Linear structural equations with latent variables. Psychometrika 45, 289308.
  • Breiman, L. (2001). Random forests. Machine Learning 45, 532.
  • Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1993). Classification and Regression Trees. Chapman and Hall/CRC, New York, USA.
  • Bureau, A., Dupuis, J., Falls, K., Lunetta, K., Hayward, B., Keith, T. and Van Eerdewegh, P. (2005). Identifying SNPs predictive of phenotype using random forests. Genetic Epidemiology 28, 171182.
  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics 7, 126.
  • Efron, B. (1981). Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68, 589599.
  • Foulkes, A. (2009). Applied Statistical Genetics with R: for Population-based Association Studies. Springer, NY.
  • Foulkes, A. S. and De Gruttola, V. (2002). Characterizing the relationship between HIV-1 genotype and phenotype: prediction-based classification. Biometrics 58, 145156.
  • Foulkes, A. S., De Gruttola, V. and Hertogs, K. (2004). Combining genotype groups and recursive partitioning: an application to human immunodeficiency virus type 1 genetics data. Journal of the Royal Statistical Society Series C 53, 311323.
  • Foulkes, A. S., Reilly, M., Zhou, L., Wolfe, M. and Rader, D. J. (2005). Mixed modelling to characterize genotype–phenotype associations. Statistics in Medicine 24, 775789.
  • Foulkes, A. S., Wohl, D. A., Frank, I., Puleo, E., Restine, S., Wolfe, M. L., Dube, M. P., Tebas, P. and Reilly, M. P. (2006). Associations among race/ethnicity, ApoC-III genotypes, and lipids in HIV-1-infected individuals on antiretroviral therapy. PLoS Medicine 3, 03370347.
  • Foulkes, A. S., Yucel, R. and Li, X. (2008). A likelihood-based approach to mixed modeling with ambiguity in cluster identifiers. Biostatistics 9, 635657.
  • Gentleman, R., Carey, V., Huber, W., Irizarry, R. and Dudoit, S. (2005). Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer, New York, USA.
  • Goeman, J., van de Geer, S., de Kort, F. and van Houwelingen, H. (2004). A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20, 9399.
  • Good, P. I. (2005). Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer, New York, USA.
  • Hartigan, J. A. (1975). Clustering Algorithms. Wiley, Ann Arbor.
  • Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, USA.
  • Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In: Structural Equation Models in the Social Sciences (ed. A. S. Goldberger and O. D. Duncan), New York, pp. 85–112.
  • Kooperberg, C., LeBlanc, M. and Obenchain, V. (2010). Risk prediction using genome-wide association studies. Genetic Epidemiology 34, 64352.
  • Kooperberg, C. and Ruczinski, I. (2005). Identifying interacting SNPs using Monte Carlo logic regression. Genetic Epidemiology 28, 157170.
  • Kooperberg, C., Ruczinski, I., LeBlanc, M. and Hsu, L. (2001). Sequence analysis using logic regression. Genetic Epidemiology 21, S626S631.
  • Laird, N. and Ware, J. (1982). Random-effects models for longitudinal data. Biometrics 38, 963974.
  • Lee, S., Jhun, M., Lee, E. K. and Park, T. (2007). Application of structural equation models to construct genetic networks using differentially expressed genes and single-nucleotide polymorphisms. BMC Proceedings 1, S76.
  • Lee, S. and Shi, J. (2001). Maximum likelihood estimation of two-level latent variable models with mixed continuous and polytomous data. Biometrics 57, 787794.
  • Malovini, A., Nuzzo, A., Ferrazzi, F., Puca, A. and Bellazzi, R. (2009). Phenotype forecasting with SNPs data through gene-based Bayesian networks. BMC Bioinformatics 10, S7.
  • Muthén, B. O. (1984). A general structural equation model with dichotomous, ordered categorical and continuous latent indicators. Psychometrika 49, 115132.
  • Muthén, B. O. (2002). Beyond SEM: general latent variable modeling. Behaviormetrika, 29, 81117.
  • Muthén, L. K. and Muthén, B. O. (2007). Mplus User's Guide. Muthén & Muthén, Los Angeles, CA.
  • Nock, N. L., Larkin, E. K., Morris, N. J., Li, Y. and Stein, C. M. (2007). Modeling the complex gene x environment interplay in the simulated rheumatoid arthritis GAW15 data using latent variable structural equation modeling. BMC Proceedings 1, S118.
  • Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo, CA.
  • Pugesek, B. H., Tomer, A. and Eye, A. V. (2003). Structural Equation Modeling: Applications in Ecological and Evolutionary Biology. Cambridge University Press, Cambridge.
  • Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2004). Generalized multilevel structural equation modeling. Psychometrika 69, 167190.
  • Reboussin, B. and Liang, K. (1998). An estimating equations approach for the liscomp model. Psychometrika 63, 165182.
  • Rodin, A. and Boerwinkle, E. (2005). Mining genetic epidemiology data with Bayesian networks i: Bayesian networks and example application (plasma apoE levels). Bioinformatics 21, 32733278.
  • Ruczinski, I., Kooperberg, C. and LeBlanc, M. (2003). Logic regression. Journal of Computational and Graphical Statistics 12, 475511.
  • Ruczinski, I., Kooperberg, C. and LeBlanc, M. (2004). Exploring interactions in high dimensional genomic data: an overview of logic regression. Journal of Multivariate Analysis 90, 178195.
  • Sánchez, B. N., Budtz-Jørgensen, E., Ryan, L. M. and Hu, H. (2005). Structural equation models: a review with applications to environmental epidemiology. Journal of the American Statistical Association 100, 14431455.
  • Schwender, H. and Ickstadt, K. (2008). Identification of SNP interactions using logic regression. Biostatistics 9, 187198.
  • Schwender, H., Ickstadt, K. and Rahnenführer, J. (2008). Classification with high-dimensional genetic data: assigning patients and genetic features to known classes. Biometrical Journal 50, 911926.
  • Segal, M., Barbour, J. and Grant, R. (2004). Relating HIV-1 sequence variation to replication capacity via trees and forests. Statistical Applications in Genetics and Molecular Biology 3, Article 2.
  • Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Chapman & Hall/CRC, Boca Raton.
  • Skrondal, A. and Rabe-Hesketh, S. (2005). Structural equation modeling: categorical variables. In: Encyclopedia of Statistics in Behavioral Science, Wiley, London pp. 18.
  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B 58, 267288.
  • Wu, T., Chen, Y., Hastie, T., Sobel, E. and Lange, K. (2009). Genome-wide association analysis by Lasso penalized logistic regression. Bioinformatics 25, 71421.
  • Zhang, H. and Singer, B. (1999). Recursive Partitioning in the Health Sciences. Springer, New York, USA.
  • Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B 67, 301320.