Get access

Joint generalized models for multidimensional outcomes: A case study of neuroscience data from multimodalities


  • Xiao-Feng Wang

Corresponding author: e-mail: or, Phone: +1-216-445-7737, Fax: +1-216-445-2781


This paper is motivated from the analysis of neuroscience data in a study of neural and muscular mechanisms of muscle fatigue. Multidimensional outcomes of different natures were obtained simultaneously from multiple modalities, including handgrip force, electromyography (EMG), and functional magnetic resonance imaging (fMRI). We first study individual modeling of the univariate response depending on its nature. A mixed-effects beta model and a mixed-effects simplex model are compared for modeling the force/EMG percentages. A mixed-effects negative-binomial model is proposed for modeling the fMRI counts. Then, I present a joint modeling approach to model the multidimensional outcomes together, which allows us to not only estimate the covariate effects but also to evaluate the strength of association among the multiple responses from different modalities. A simulation study is conducted to quantify the possible benefits by the new approaches in finite sample situations. Finally, the analysis of the fatigue data is illustrated with the use of the proposed methods.