SEARCH

SEARCH BY CITATION

References

  • Bown, M. J., Sutton, A. J., Bell, P. R. F. and Sayers, R. D. ( 2002). A meta-analysis of 50 years of ruptured abdominal aortic aneurysm repair. British Journal of Surgery 89, 714730.
  • Brady, A. R., Thompson, S. G., Fowkes, F. G. R., Greenhalgh, R. M., Powell, J. T. and UK Small Aneurysm Trial Participants ( 2004). Abdominal aortic aneurysm expansion – risk factors and time intervals for surveillance. Circulation 110, 1621.
  • Brown, E. R. and Ibrahim, J. G. ( 2003). A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics 59, 221228.
  • Brown, E. R., Ibrahim, J. G. and DeGruttola, V. ( 2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics 61, 6473.
  • Bycott, P. and Taylor, J. ( 1998). A comparison of smoothing techniques for CD4 data measured with error in a time-dependent Cox proportional hazards model. Statistics in Medicine 17, 20612077.
  • Chi, Y. Y. and Ibrahim, J. G. ( 2006). Joint models for multivariate longitudinal and multivariate survival data. Biometrics 62, 432445.
  • Cox, D. R. ( 1972). Regression models and life-tables. Journal of the Royal Statistical Society Series B – Statistical Methodology 34, 187220.
  • Dafni, U. G. and Tsiatis, A. A. ( 1998). Evaluating surrogate markers of clinical outcome when measured with error. Biometrics 54, 14451462.
  • Faucett, C. L. and Thomas, D. C. ( 1996). Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Statistics in Medicine 15, 16631685.
  • Gelman, A. and Hill, J. ( 2007). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge.
  • Guo, X. and Carlin, B. P. ( 2004). Separate and joint modeling of longitudinal and event time data using standard computer packages. American Statistician 58, 1624.
  • Henderson, R., Diggle, P. and Dobson, A. ( 2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465480.
  • Hogan, J. W. and Laird, N. M. ( 1998). Increasing efficiency from censored survival data by using random effects to model longitudinal covariates. Statistical Methods in Medical Research 7, 2848.
  • Hsieh, F., Tseng, Y.-K. and Wang, J.-L. ( 2006). Joint modeling of survival and longitudinal data: Likelihood approach revisited. Biometrics 62, 10371043.
  • Little, R. J. A. ( 1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 11121121.
  • Prentice, R. L. ( 1982). Covariate measurement error and parameter-estimation in a failure time regression-model. Biometrika 69, 331342.
  • Rizopoulos, D. ( 2010). JM: an R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software 35, 133.
  • Scott, R. A. P., Wilson, N. M., Ashton, H. A. and Kay, D. N. ( 1995). Influence of screening on the incidence of ruptured abdominal aortic aneurysm: 5-year results of a randomized controlled study. British Journal of Surgery 82, 10661070.
  • Self, S. and Pawitan, Y. ( 1992). Modeling a marker of disease progression and onset of disease. In: Jewell, N., Dietz, K. and Farewell, V., (Eds.), AIDS Epidemiology: Methodological Issues, Birkhäuser, Boston, MA.
  • Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. ( 2003). WinBUGS Version 1.4 User Manual. MRC Biostatistics Unit, Cambridge.
  • Sweeting, M. J. and Thompson, S. G. ( 2011). Making predictions from complex longitudinal data, with application to planning monitoring intervals in a national screening programme. Journal of the Royal Statistical Society Series A – Statistics in Society (To appear).
  • Thompson, S. G., Ashton, H. A., Gao, L. and Scott, R. A. P. ( 2009). Screening men for abdominal aortic aneurysm: 10 year mortality and cost effectiveness results from the randomised Multicentre Aneurysm Screening Study. British Medical Journal 338, b2307.
  • Tsiatis, A. A. and Davidian, M. ( 2004). Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 14, 809834.
  • Tsiatis, A. A., De Gruttola, V. and Wulfsohn, M. S. ( 1995). Modelling the relationship of survival to longitudinal data measured with error – application to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association 90, 2737.
  • UK Small Aneurysm Trial Participants ( 1995). The UK Small Aneurysm Trial - design, methods and progress. European Journal of Vascular and Endovascular Surgery 9, 42–48.
  • Vickers, A. J., Till, C., Tangen, C. M., Lilja, H. and Thompson, I. M. ( 2011). An empirical evaluation of guidelines on prostate-specific antigen velocity in prostate cancer detection. Journal of the National Cancer Institute 103, 462469.
  • Williamson, P. R., Kolamunnage-Dona, R., Philipson, R. and Marson, A. G. ( 2008). Joint modelling of longitudinal and competing risks data. Statistics in Medicine 27, 64266438.