• 1
    Marx, J. (2002) Unraveling the causes of diabetes. Science 296, 686689.
  • 2
    Moller, D. E. (2001) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414, 821827.
  • 3
    Liu, Q., Chen, L., Hu, L., Guo, Y., and Shen, X. (2010) Small molecules from natural sources, targeting signaling pathways in diabetes. Biochim. Biophys. Acta 1799, 854865.
  • 4
    Hwang, J., Kwon, D. Y., and Yoon, S. H. (2009) AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. New Biotechnol. 26, 1722.
  • 5
    Hardie, D. G. (2011) Sensing of energy and nutrients by AMP-activated protein kinase. Am. J. Clin. Nutr. 93, 891S896S.
  • 6
    Hardie, D. G. (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int. J. Obes. (Lond). 32 (Suppl. 4), S7S12.
  • 7
    Fogarty, S., and Hardie, D. G. (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta 1804, 581591.
  • 8
    Ha, B. G., Nagaoka, M., Yonezawa, T., Tanabe, R., Woo, J. T., et al. (2012) Regulatory mechanism for the stimulatory action of genistein on glucose uptake in vitro and in vivo. J. Nutr. Biochem. 23, 501509.
  • 9
    Minakawa, M., Miura, Y., and Yagasaki, K. (2012) Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice. Biochem. Biophys. Res. Commun. 422, 469475.
  • 10
    Son, M. J., Minakawa, M., Miura, Y., and Yagasaki, K. (2013) Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice. Eur. J. Nutr. 52, 16071619.
  • 11
    Cheong, S. H., Furuhashi, K., Ito, K., Nagaoka, M., Yonezawa, T., et al. (2014) Daidzein promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and improves glucose homeostasis in Type 2 diabetic model mice. J. Nutr. Biochem. 25, 136143.
  • 12
    Cheong, S. H., Furuhashi, K., Ito, K., Nagaoka, M., Yonezawa, T., et al. (2014) Antihyperglycemic effect of equol, a daidzein derivative, in cultured L6 myocytes and ob/ob mice. Mol. Nutr. Food. Res. 58, 267277.
  • 13
    Nishina, A., Kubota, K., Kameoka, H., and Osawa, T. (1991) Antioxidizing component, Musizin, in Rumex japonicus Houtt. J. Am. Oil Chem. Soc. 68, 735739.
  • 14
    Li, Y. P., Takamiyagi, A., Ramzi, S. T., and Nonaka, S. (2000) Inhibitory effect of Rumex japonicus Houtt on the porphyrin photooxidative reaction. J. Dermatol. 27, 761768.
  • 15
    Zee, O. P., Kim, D. K., Kwon, H. C., and Lee, K. R. (1998) A new epoxynaphthoquinol from Rumex japonicus. Arch. Pharm. Res. 21, 485486.
  • 16
    Elzaawely, A. A., Xuan, T. D., and Tawata, S. (2005) Antioxidant and antibacterial activities of Rumex japonicus Houtt. Aerial parts. Biol. Pharm. Bull. 28, 22252230.
  • 17
    Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 5563.
  • 18
    Kawano, A., Nakamura, H., Hata, S., Minakawa, M., Miura, Y., et al. (2009) Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice. Phytomedicine 16, 437443.
  • 19
    Nishiumi, S., and Ashida, H. (2007) Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: application to detection of translocated glucose transporter 4 on the plasma membrane. Biosci. Biotechnol. Biochem. 71, 23432346.
  • 20
    Folch, J., Lees, M., and Sloane Stanley, G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497509.
  • 21
    Kojima, T., Uesugi, T., Toda, T., Miura, Y., and Yagasaki, K. (2002) Hypolipidemic action of the soybean isoflavones genistein and genistin in glomerulonephritic rats. Lipids 37, 261265.
  • 22
    Bhatt, J. K., Thomas, S., and Nanjan, M. J. (2012) Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr. Res. 32, 537541.
  • 23
    Yin, J., Xing, H., and Ye, J. (2008) Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57, 712717.
  • 24
    Zhang, Y., Li, X., Zou, D., Liu, W., Yang, J., et al. (2008) Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J. Clin. Endocrinol. Metab. 93, 25592565.
  • 25
    Kim, S., Jin, Y., Choi, Y., and Park, T. (2011) Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem. Pharmacol. 81, 13431351.
  • 26
    Lee, Y. S., Kim, W. S., Kim, K. H., Yoon, M. J., Cho, H. J., et al. (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55, 22562264.
  • 27
    Huang, C., Somwar, R., Patel, N., Niu, W., Török, D., et al. (2002) Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity. Diabetes 51, 20902098.
  • 28
    Kozka, I. J., Clark, A. E., and Holman, G. D. (1991) Chronic treatment with insulin selectively down-regulates cell-surface GLUT4 glucose transporters in 3T3-L1 adipocytes. J. Biol. Chem. 266, 1172611731.
  • 29
    Garvey, W. T., Olefsky, J. M., Matthaei, S., and Marshall, S. (1987) Glucose and insulin co-regulate the glucose transport system in primary cultured adipocytes. A new mechanism of insulin resistance. J. Biol. Chem. 262, 189197.
  • 30
    Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K., et al. (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116, 17841792.
  • 31
    Maeda, N., Takahashi, M., Funahashi, T., Kihara, S., Nishizawa, H., et al. (2001) PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50, 20942099.
  • 32
    Phillips, S. A., Ciaraldi, T. P., Kong, A. S., Bandukwala, R., Aroda, V., et al. (2003) Modulation of circulating and adipose tissue adiponectin levels by antidiabetic therapy. Diabetes 52, 667674.
  • 33
    Kang, L., Heng, W., Yuan, A., Baolin, L., and Fang, H. (2010) Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes: relative to inhibition of inflammatory responses. Biochimie 92, 789796.
  • 34
    Huypens, P., Quartier, E., Pipeleers, D., and Van de Casteele, M. (2005) Metformin reduces adiponectin protein expression and release in 3T3-L1 adipocytes involving activation of AMP activated protein kinase. Eur. J. Pharmacol. 518, 9095.
  • 35
    Chen, C., Zhang, Y., and Huang, C. (2010) Berberine inhibits PTP1B activity and mimics insulin action. Biochem. Biophys. Res. Commun. 397, 543547.
  • 36
    Huang, S., and Czech, M. P. (2007) The GLUT4 glucose transporter. Cell. Metab. 5, 237252.
  • 37
    Yagasaki, K. (2014) Anti-diabetic phytochemicals that promote GLUT4 translocation via AMPK signaling in muscle cells. Nutr. Aging 2, 3544.
  • 38
    Kurth-Kraczek, E. J., Hirshman, M. F., Goodyear, L. J., and Winder, W. W. (1999) 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48, 16671671.
  • 39
    Musi, N., and Goodyear, L. J. (2003) AMP-activated protein kinase and muscle glucose uptake. Acta Physiol. Scand. 178, 337345.
  • 40
    Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S., Bardeesy, N., et al. (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 16421646.
  • 41
    McConell, G. K., Manimmanakorn, A., Lee-Young, R. S., Kemp, B. E., Linden, K. C., et al. (2008) Differential attenuation of AMPK activation during acute exercise following exercise training or AICAR treatment. J. Appl. Physiol. 105, 14221427.
  • 42
    Hardie, D. G. (2007) AMP-activated protein kinase as a drug target. Annu. Rev. Pharmacol. Toxicol. 47, 185210.