• 1
    Satoh, S., Mogi, K., Murakami, S., Nakashima, T., SS Pharmaceutical Co., Ltd. US Patent 4 469 704, 1984.
  • 2
    Traitler, H., Viret, J.-L., Nestec S.A. US Patent 5 474 775, 1995.
  • 3
    Tran, A. V., Chambers, R. P., The dehydration of fermentative 2,3-butanediol into methyl ethyl ketone. Biotechnol. Bioeng. 1987, 29, 343351.
  • 4
    Voloch, M., Jansen, N., Ladisch, M., Narayan, R., Tsao, G. T., Fermentation Derived 2,3-Butanediol, Comprehensive Biotechnology, Pergamon Press Ltd., UK 1986, p. 933.
  • 5
    Winfield, M. E., The catalytic dehydration of 2,3-butanediol to butadiene. II. Adsorption equilibria. Aust. J. Sci. Res., Ser. A: Phys. Sci. 1950, 3, 290.
  • 6
    White, W. C., Butadiene production process overview. Chem. Biol. Interact. 2007, 166, 1014.
  • 7
    Egawa, H., Ito, N., European Patent Application EP1 562 245, 2005.
  • 8
    Syu, M. J., Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 2001, 55, 1018.
  • 9
    Garg, S., Jain, A., Fermentative production of 2,3-butanediol: A review. Bioresour. Technol. 1995, 51, 103109.
  • 10
    Voloch, M., Jansen, N. B., Ladisch, M., Tsao, G. T., et al., 2,3-Butanediol, in: Moo-Young, M. (Ed.), Comprehensive Biotechnology: The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine, Pergamon Press, New York 1985.
  • 11
    Voloch, M., Ladisch, M. R., Rodwell, V. W., Tsao, G. T., Reduction of acetoin to 2,3-butanediol in Klebsiella pneumoniae: A new model. Biotechnol. Bioeng. 1983, 25, 173183.
  • 12
    De Mas, C., Jansen, N. B., Tsao, G. T., Production of optically active 2,3-butanediol by Bacillus polymyxa. Biotechnol. Bioeng. 1988, 31, 366377.
  • 13
    Neish, A. C., Blackwood, A. C., Ledingham, G. A., A 2,3-butanediol-glycerol fermentation. Science (New York, N.Y.) 1945, 101, 245.
  • 14
    Ui, S., Mimura, A., Okuma, M., Kudo, T., The production of D-acetoin by a transgenic Escherichia coli. Lett. Appl. Microbiol. 1998, 26, 275278.
  • 15
    Ui, S., Okajima, Y., Mimura, A., Kanai, H., Kudo, T., Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol. J. Ferment. Bioeng. 1997, 84, 185189.
  • 16
    Ui, S., Takusagawa, Y., Sato, T., Ohtsuki, T. et al., Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli. Lett. Appl. Microbiol. 2004, 39, 533537.
  • 17
    Yan, Y., Lee, C., Liao, J., Enantioselective synthesis of pure (R, R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org. Biomol. Chem. 2009, 7, 39143917.
  • 18
    Datsenko, K. A., Wanner, B. L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 66406645.
  • 19
    Chang, Y. Y., Cronan, J. E. Jr., Mapping nonselectable genes of Escherichia coli by using transposon Tn10: Location of a gene affecting pyruvate oxidase. J. Bacteriol. 1982, 151, 12791289.
  • 20
    Xu, P., Qiu, J., Gao, C., Ma, C., Biotechnological routes to pyruvate production. J. Biosci. Bioeng. 2008, 105, 169175.
  • 21
    Zelic, B., Gostovic, S., Vuorilehto, K., Vasic-Racki, D., Takors, R., Process strategies to enhance pyruvate production with recombinant Escherichia coli: From repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol. Bioeng. 2004, 85, 638646.
  • 22
    Barak, Z., Chipman, D. M., Gollop, N., Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria. J. Bacteriol. 1987, 169, 37503756.
  • 23
    Singh, A., Lynch, M. D., Gill, R. T., Genes restoring redox balance in fermentation-deficient E. coli NZN111. Metab. Eng. 2009, 11, 347354.
  • 24
    Riondet, C., Cachon, R., Wache, Y., Alcaraz, G., Divies, C., Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J. Bacteriol. 2000, 182, 620626.
  • 25
    San, K. Y., Bennett, G. N., Berrios-Rivera, S. J., Vadali, R. V. et al., Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab. Eng. 2002, 4, 182192.
  • 26
    Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R. et al., Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 2009, 5, 593599.
  • 27
    Reed, J. L., Vo, T. D., Schilling, C. H., Palsson, B. O., An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 2003, 4, R54.
  • 28
    Silber, P., Chung, H., Gargiulo, P., Schulz, H., Purification and properties of a diacetyl reductase from Escherichia coli. J. Bacteriol. 1974, 118, 919927.
  • 29
    Yamada-Onodera, K., Yamamoto, H., Kawahara, N., Tani, Y., Expression of the gene of glycerol dehydrogenase from Hansenula polymorpha Dl-1 in Escherichia coli for the production of chiral compounds. Acta Biotechnol. 2002, 22, 355362.
  • 30
    Yamada-Onodera, K., Yamamoto, H., Emoto, E., Kawahara, N., Tani, Y., Characterisation of glycerol dehydrogenase from a methylotrophic yeast, Hansenula polymorpha Dl-1, and its gene cloning. Acta Biotechnol. 2002, 22, 337353.
  • 31
    Crow, V. L., Properties of 2,3-butanediol dehydrogenases from Lactococcus lactis subsp lactis in relation to citrate fermentation. Appl. Environ. Microbiol. 1990, 56, 16561665.
  • 32
    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., Ingram, L. O., Genetic-improvement of Escherichia coli for ethanol-production – Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase-Ii. Appl. Environ. Microbiol. 1991, 57, 893900.
  • 33
    Zhou, S., Iverson, A. G., Grayburn, W. S., Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol. Lett. 2008, 30, 335342.
  • 34
    Causey, T. B., Shanmugam, K. T., Yomano, L. P., Ingram, L. O., Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc. Natl. Acad. Sci. USA 2004, 101, 22352240.
  • 35
    Wu, H., Li, Z. M., Zhou, L., Ye, Q., Improved succinic acid production in the anaerobic culture of an Escherichia coli PflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl. Environ. Microbiol. 2007, 73, 78377843.
  • 36
    Dien, B. S., Hespell, R. B., Ingram, L. O., Bothast, R. J., Conversion of corn milling fibrous co-products into ethanol by recombinant Escherichia coli strains K011 and SL40. World J. Microbiol. Biotechnol. 1997, 13, 619625.
  • 37
    Dumsday, G. J., Zhou, B., Yaqin, W., Stanley, G. A., Pamment, N. B., Comparative stability of ethanol production by Escherichia coli KO11 in batch and chemostat culture. J. Ind. Microbiol. Biotechnol. 1999, 23, 701708.
  • 38
    Monnet, C., Aymes, F., Corrieu, G., Diacetyl and alpha-acetolactate overproduction by Lactococcus lactis subsp lactis biovar diacetylactis mutants that are deficient in alpha-acetolactate decarboxylase and have a low lactate dehydrogenase activity. Appl. Environ. Microbiol. 2000, 66, 55185520.
  • 39
    Shalel-Levanon, S., San, K. Y., Bennett, G. N., Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and glycolysis pathway in Escherichia coli under growth conditions. Biotechnol. Bioeng. 2005, 92, 147159.
  • 40
    Goupil-Feuillerat, N., Cocaign-Bousquet, M., Godon, J. J., Ehrlich, S. D., Renault, P., Dual role of alpha-acetolactate decarboxylase in Lactococcus lactis subsp. lactis. J. Bacteriol. 1997, 179, 62856293.
  • 41
    Harvey, R. J., Collins, E. B., Roles of citrate and acetoin in the metabolism of Streptococcus diacetilactis. J. Bacteriol. 1963, 86, 13011307.
  • 42
    Connor, M. R., Liao, J. C., Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl. Environ. Microbiol. 2008, 74, 57695775.