• 1
    Reese, T. S., Karnovsky, M. J., Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell. Biol. 1967, 34, 207217.
  • 2
    Ribatti, D., Nico, B., Crivellato, E., Artico, M., Development of the blood–brain barrier: A historical point of view. Anat. Rec. 2006, 289B, 38.
  • 3
    Brightman, M. W., Reese, T. S., Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 1969, 40, 648677.
  • 4
    Vorbrodt, A. W., Dobrogowska, D. H., Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: Electron microscopist's view. Brain Res. Brain Res. Rev. 2003, 42, 221242.
  • 5
    Abbott, N. J., Ronnback, L., Hansson, E., Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 2006, 7, 4153.
  • 6
    Demeuse, P., Kerkhofs, A., Struys-Ponsar, C., Knoops, B. et al., Compartmentalized coculture of rat brain endothelial cells and astrocytes: A syngeneic model to study the blood–brain barrier. J. Neurosci. Methods 2002, 121, 2131.
  • 7
    Galliard, P. J., Voorwinden, L. H., Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur. J. Pharm. Sci. 2001, 12, 215222.
  • 8
    Garcia, C. M., Darland, D., Massingham, L., D'Amore, P., Endothelial cell–astrocyte interactions and TGFh are required for induction of blood–neural barrier properties. Brain Res. Dev. Brain Res. 2004, 152, 2534.
  • 9
    Rubin, L. L., Hall, D. E., Porter, S., Barbu, K. et al., A cell culture model of the blood–brain barrier. J. Cell Biol. 1991, 115, 17251735.
  • 10
    Ma, S. H., Lepak, L. A., Hussain, R. J., Shain, W. et al., An endothelial and astrocytes co-culture model of the blood–brain barrier utilizing an ultra-thin, nanofabricated silicon nitride membrane. Lab Chip. 2005, 5, 7485.
  • 11
    Ribeiro, M. M. B., Castanho, M. A. R. B., Serrano, I., In vitro blood–brain barrier models – latest advances and therapeutic applications in a chronological perspective. Mini-Rev. Med. Chem. 2010, 10, 263271.
  • 12
    Deli, M. A., Abraham, C. S., Kataoka, Y., Niwa, M., Permeability studies on in vitro blood–brain barrier models: Physiology, pathology, and pharmacology. Cell Mol. Neurobiol. 2005, 25, 59127.
  • 13
    Perriere, N., Demeuse, P. H., Garcia, E., Regina, A. et al., Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier specific properties. J. Neurochem. 2005, 93, 279289.
  • 14
    Weidenfeller, C., Svendsen, C., Shusta, E., Differentiating embryonic neural progenitor cells induce blood–brain barrier properties. J. Neurochem. 2007, 101, 555565.
  • 15
    Weidenfeller, C., Schrot, S., Zozulya, A., Galla, H. J., Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone. Brain Res. 2005, 49, 162174.
  • 16
    Calabria, A. R., Weidenfeller, C., Jones, A. R., de Vries, H. E. et al., Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction. J. Neurochem. 2006, 97, 922933.
  • 17
    Nakagawa, S., A new blood–brain barrier model using primary rat brain endothelial cells, pericytes, and astrocytes. Neurochem Int. 2009, 54, 253263.
  • 18
    Neuhaus, W., Freidl, M., Szkokan, P., Berger, M. et al., Effects of NMDA receptor modulators on a blood–brain barrier in vitro model. Brain Res. 2011, 1394, 4961.
  • 19
    Hatherell, K., Couraud, P.-O., Romero, I. A., Weksler, B. et al., Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J. Neuro. Methods. 2011, 199, 223229.
  • 20
    Shayan, G., Choi, Y. S., Shusta, E. V., Shuler, M. L. et al., Eur. J. Pharm. Sci. 2011, 42, 148155.
  • 21
    Gibb, S. L., Boston-Howes, W., Lavina, Z. S., Gustincich, S. et al., A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J. Biol. Chem. 2007, 282, 3248032490.
  • 22
    Shuler, M. L., Kargi, F. Bioprocess Engineering, 2nd Edn., Prentice Hall PTR, New Jersey, USA, 2002, pp. 125.
  • 23
    Deli, M. A., Abraham, C. S., Niwa, M., Falus, A., N,N-diethyl-2-[4-(phenylmethyl)phenoxy]ethananmine increases the permeability of primary mouse cerebral endothelial cell monolayers. Inflamm. Res. 2003, 52, S39S40.
  • 24
    Reichel, A., Begley, D. J., Abbott, N. J., An overview of in vitro techniques for blood–brain barrier studies. Methods Mol. Med. 2003, 89, 307324.
  • 25
    Toth, A., Veszelka, S., Nakagawa, S., Niwa, M. et al., Patented in vitro blood–brain barrier models in CNS drug discovery. Recent Pat. CNS Drug Discov. 2011, 6, 107118.