• 1
    Ideker, T., Lauffenburger, D. A., Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends Biotechnol. 2003, 21, 255262.
  • 2
    Janes, K. A., Lauffenburger, D. A., A biological approach to computational models of proteomic networks. Curr. Opin. Chem. Biol. 2006, 10, 7380.
  • 3
    Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., Ho, D. D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996, 271, 15821586.
  • 4
    Hendriks, B. S., Opresko, L. K., Wiley, H. S., Lauffenburger, D., Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo- and heterodimers depends on relative HER2 levels. J. Biol. Chem. 2003, 278, 2334323351.
  • 5
    Heinrich, R., Neel, B. G., Rapoport, T. A., Mathematical models of protein kinase signal transduction. Mol. Cell 2002, 9, 957970.
  • 6
    Janes, K. A., Albeck, J. G., Gaudet, S., Sorger, P. et al., A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 2005, 310, 16461653.
  • 7
    Woolf, P. J., Prudhomme, W., Daheron, L., Daley, G. Q., Lauffenburger, D. A., Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics 2005, 21, 741753.
  • 8
    Hunter, P. J., Crampin, E. J., Nielsen, P. M., Bioinformatics, multiscale modeling and the IUPS Physiome Project. Brief Bioinform. 2008, 9, 333343.
  • 9
    Vicini, P., Multiscale modeling in drug discovery and development: future opportunities and present challenges. Clin. Pharmacol. Ther. 2010, 88, 126129.
  • 10
    Chowbina, S., Janes, K. A., Peirce, S. M., Papin, J. A., Mathematical and computational models in cancer. in: Gioeli, D. (Ed.), Targeted Therapies: Mechanisms of Resistance, Humana Press, New York, NY 2011, pp. 113–126.
  • 11
    Morris, M. K., Saez-Rodriguez, J., Sorger, P. K., Lauffenburger, D. A., Logic-based models for the analysis of cell signaling networks. Biochemistry 2010, 49, 32163224.
  • 12
    Zhang, R., Shah, M., Yang, J., Nyland, S. et al., Network model of survival signaling in large granular lymphocyte leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 1630816313.
  • 13
    Saez-Rodriguez, J., Alexopoulos, L. G., Zhang, M., Morris, M. K. et al., Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Res. 2011, 71, 54005411.
  • 14
    Glass, L., Kauffman, S. A., The logical analysis of continuous, non-linear biochemical control networks. J. Theo. Bio. 1973, 39, 103129.
  • 15
    Mendoza, L., Xenarios, I., A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theo. Biol. Med. Model. 2006, 3, 13.
  • 16
    Wittmann, D., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D. A. et al., Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst. Biol. 2009, 3, 98.
  • 17
    Morris, M. K., Saez-Rodriguez, J., Clarke, D. C., Sorger, P. K., Lauffenburger, D. A., Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput. Biol. 2011, 7, e1001099.
  • 18
    Bauer-Mehren, A., Furlong, L. I., Sanz, F., Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol. Syst. Biol. 2009, 5, 290.
  • 19
    Saez-Rodriguez, J., Alexopoulos, L. G., Epperlein, J., Samaga, R. et al., Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 2009, 5, 331.
  • 20
    van Dam, H., Castellazzi, M., Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene 2001, 20, 24532464.
  • 21
    Hess, J., Angel, P., Schorpp-Kistner, M., AP-1 subunits: quarrel and harmony among siblings. J. Cell Sci. 2004, 117, 59655973.
  • 22
    Chinenov, Y., Kerppola, T. K., Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001, 20, 24382452.
  • 23
    Sarkar, C. A., Lauffenburger, D. A., Cell-level pharmacokinetic model of granulocyte colony-stimulating factor: implications for ligand lifetime and potency in vivo. Mol. Pharmacol. 2003, 63, 147158.
  • 24
    Sarkar, C. A., Lowenhaupt, K., Horan, T., Boone, T. C. et al., Rational cytokine design for increased lifetime and enhanced potency using pH-activated “histidine switching”. Nat. Biotechnol. 2002, 20, 908913.
  • 25
    Petros, W. P., Pharmacokinetics and administration of colony-stimulating factors. Pharmacotherapy 1992, 12, 32S38S.
  • 26
    Kuwabara, T., Kobayashi, S., Sugiyama, Y., Pharmacokinetics and phyamacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab. Rev. 1996, 28, 625658.
  • 27
    Lauffenburger, D. A., Fallon, E. M., Haugh, J. M., Scratching the (cell) surface: cytokine engineering for improved ligand/receptor trafficking dynamics. Chem. Biol. 1998, 5, R257R263.
  • 28
    Ricci, M. S., Brems, D. N., Common structural stability properties of 4-helical bundle cytokines: possible physiological and pharmaceutical consequences. Curr. Pharm. Des. 2004, 10, 39013911.
  • 29
    Jones, D. S., Silverman, A. P., Cochran, J. R., Developing therapeutic proteins by engineering ligand-receptor interactions. Trends Biotechnol. 2008, 26, 498505.
  • 30
    Yoon, D. J., Liu, C. T., Quinlan, D. S., Nafisi, P. M., Kamei, D. T., Intracellular trafficking considerations in the development of natural ligand-drug molecular conjugates for cancer. Ann. Biomed. Eng. 2011, 39, 12351251.