SEARCH

SEARCH BY CITATION

Keywords:

  • AFM;
  • Bionanotechnology;
  • Polypeptide engineering;
  • Protein fibrils;
  • Self-assembly

Abstract

Bionanotechnology aims to impart new properties to materials from unique functionalities present in biomolecules. However, the promise of bionanotechnology has not materialized beyond the biomedical field due in large part to issues of scalability, purity, and cost of manufacturing. In this work we demonstrate an approach to co-engineer production and system functionality into a single polypeptide. We designed a system to anchor particles onto hair via a multifunctional polypeptide composed of two domains, one with affinity to hair and the other capable of strong interactions with the particle surface. These strong interactions, exemplified by resistance to anionic surfactants, stem from the ability to self-assemble into higher order structures, which were observed by atomic force microscopy. At the same time, the controlled solubility properties of the particle binding domain permit the scalable production in Escherichia coli via inclusion bodies and cost effective purification. We believe this is a significant advance toward the development of bionanotechnology for industrial applications.