• carotenoids;
  • xanthophylls;
  • epoxycarotenoids;
  • in situ;
  • Raman mapping


This paper demonstrates the special advantages of FT-Raman spectroscopy for in situ studies of several carotenoids that occur ubiquitously in the plant kingdom. Spectra obtained from various tissues of a range of plant species indicate that the wavenumber location of C[DOUBLE BOND]C stretching vibrations is mainly influenced both by the length as well as by the terminal substituents of the polyene chain of carotenoids and by their interaction with other plant constituents. The obtained results show also the usefulness of Raman spectroscopy in the investigation of cistrans isomerization of carotenoids during processing. Additionally, 2-D Raman mappings present a unique possibility to evaluate the individual distribution of carotenoids in the intact plant tissue; in this context different 7-, 8-, and 9-double bond conjugated carotenoids can be analyzed independently in the same sample. Furthermore, the use of Raman spectroscopy for in situ detection of unstable substances such as epoxycarotenoids is discussed. © 2005 Wiley Periodicals, Inc. Biopolymers, 2005