SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Cristina Rueda, Pedro A. Calvo, Gabriel Moncalián, Gema Ruiz, Alberto Coz, Biorefinery options to valorize the spent liquor from sulfite pulping, Journal of Chemical Technology and Biotechnology, 2015, 90, 1
  2. 2
    Meng Liang, Andrew Damiani, Q. Peter He, Jin Wang, Elucidating Xylose Metabolism ofScheffersomyces stipitisfor Lignocellulosic Ethanol Production, ACS Sustainable Chemistry & Engineering, 2014, 2, 1, 38

    CrossRef

  3. 3
    Luke N. Latimer, Michael E. Lee, Daniel Medina-Cleghorn, Rebecca A. Kohnz, Daniel K. Nomura, John E. Dueber, Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae, Metabolic Engineering, 2014, 25, 20

    CrossRef

  4. 4
    Jian Zha, Minghua Shen, Menglong Hu, Hao Song, Yingjin Yuan, Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering, Journal of Industrial Microbiology & Biotechnology, 2014, 41, 1, 27

    CrossRef

  5. 5
    Nicole K. Harner, Xin Wen, Paramjit K. Bajwa, Glen D. Austin, Chi-Yip Ho, Marc B. Habash, Jack T. Trevors, Hung Lee, Genetic improvement of native xylose-fermenting yeasts for ethanol production, Journal of Industrial Microbiology & Biotechnology, 2014,

    CrossRef

  6. 6
    Vera Novy, Stefan Krahulec, Manfred Wegleiter, Gerdt Müller, Karin Longus, Mario Klimacek, Bernd Nidetzky, Process intensification through microbial strain evolution: mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae, Biotechnology for Biofuels, 2014, 7, 1, 49

    CrossRef

  7. 7
    Mario Klimacek, Elisabeth Kirl, Stefan Krahulec, Karin Longus, Vera Novy, Bernd Nidetzky, Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae, Microbial Cell Factories, 2014, 13, 1, 37

    CrossRef

  8. 8
    Ching-Sung Tsai, Suryang Kwak, Timothy L. Turner, Yong-Su Jin, Yeast synthetic biology toolbox and applications for biofuel production, FEMS Yeast Research, 2014, 14, 8
  9. 9
    Hiroko Kato, Fumio Matsuda, Ryosuke Yamada, Kento Nagata, Tomokazu Shirai, Tomohisa Hasunuma, Akihiko Kondo, Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae, Journal of Bioscience and Bioengineering, 2013, 116, 3, 333

    CrossRef

  10. 10
    Mingyong Xiong, Adam Woodruff, Xingliang Tang, Xuelei Tian, Jingtao Zhang, Limin Cao, Comparative study on the mutated xylose reductase to increase ethanol production in xylose-utilizing Saccharomyces cerevisiae strains, Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 4, 605

    CrossRef

  11. 11
    Mekonnen M Demeke, Heiko Dietz, Yingying Li, María R Foulquié-Moreno, Sarma Mutturi, Sylvie Deprez, Tom Den Abt, Beatriz M Bonini, Gunnar Liden, Françoise Dumortier, Alex Verplaetse, Eckhard Boles, Johan M Thevelein, Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering, Biotechnology for Biofuels, 2013, 6, 1, 89

    CrossRef

  12. 12
    Soo Rin Kim, Nathania R. Kwee, Heejin Kim, Yong-Su Jin, Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis, FEMS Yeast Research, 2013, 13, 3
  13. 13
    Ronald E Hector, Bruce S Dien, Michael A Cotta, Jeffrey A Mertens, Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24, Biotechnology for Biofuels, 2013, 6, 1, 84

    CrossRef

  14. 14
    Christoph Gruber, Stefan Krahulec, Bernd Nidetzky, Regina Kratzer, Harnessing Candida tenuis and Pichia stipitis in whole-cell bioreductions of o-chloroacetophenone: Stereoselectivity, cell activity, in situ substrate supply and product removal, Biotechnology Journal, 2013, 8, 6
  15. 15
    Rongliang Wang, Lulu Li, Biao Zhang, Xiaolian Gao, Dongmei Wang, Jiong Hong, Improved xylose fermentation of Kluyveromyces marxianus at elevated temperature through construction of a xylose isomerase pathway, Journal of Industrial Microbiology & Biotechnology, 2013, 40, 8, 841

    CrossRef

  16. 16
    Biao Zhang, Lulu Li, Jia Zhang, Xiaolian Gao, Dongmei Wang, Jiong Hong, Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus, Journal of Industrial Microbiology & Biotechnology, 2013, 40, 3-4, 305

    CrossRef

  17. 17
    Xueyang Feng, Huimin Zhao, Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis, Microbial Cell Factories, 2013, 12, 1, 114

    CrossRef

  18. 18
    Laura Salusjärvi, Sanna Kaunisto, Sami Holmström, Maija-Leena Vehkomäki, Kari Koivuranta, Juha-Pekka Pitkänen, Laura Ruohonen, Overexpression of NADH-dependent fumarate reductase improves d-xylose fermentation in recombinant Saccharomyces cerevisiae, Journal of Industrial Microbiology & Biotechnology, 2013, 40, 12, 1383

    CrossRef

  19. 19
    Zhen Chen, An-Ping Zeng, Protein design in systems metabolic engineering for industrial strain development, Biotechnology Journal, 2013, 8, 5
  20. 20
    Soo Rin Kim, Yong-Cheol Park, Yong-Su Jin, Jin-Ho Seo, Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism, Biotechnology Advances, 2013, 31, 6, 851

    CrossRef

  21. 21
    Tien-Yang Ma, Ting-Hsiang Lin, Teng-Chieh Hsu, Chiung-Fang Huang, Gia-Luen Guo, Wen-Song Hwang, An improved method of xylose utilization by recombinant Saccharomyces cerevisiae, Journal of Industrial Microbiology & Biotechnology, 2012, 39, 10, 1477

    CrossRef

  22. 22
    X. Hou, Anaerobic xylose fermentation by Spathaspora passalidarum, Applied Microbiology and Biotechnology, 2012, 94, 1, 205

    CrossRef

  23. 23
    Stefan Krahulec, Mario Klimacek, Bernd Nidetzky, Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae, Journal of Biotechnology, 2012, 158, 4, 192

    CrossRef

  24. 24
    Anjali Madhavan, Aradhana Srivastava, Akihiko Kondo, Virendra S. Bisaria, Bioconversion of lignocellulose-derived sugars to ethanol by engineeredSaccharomyces cerevisiae, Critical Reviews in Biotechnology, 2012, 32, 1, 22

    CrossRef

  25. 25
    Sung-Haeng Lee, Tsutomu Kodaki, Yong-Cheol Park, Jin-Ho Seo, Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae, Journal of Biotechnology, 2012, 158, 4, 184

    CrossRef

  26. 26
    Douglas B. Jordan, Michael J. Bowman, Jay D. Braker, Bruce S. Dien, Ronald E. Hector, Charles C. Lee, Jeffrey A. Mertens, Kurt Wagschal, Plant cell walls to ethanol, Biochemical Journal, 2012, 442, 2, 241

    CrossRef

  27. 27
    Aloke K. Bera, Nancy W. Y. Ho, Aftab Khan, Miroslav Sedlak, A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation, Journal of Industrial Microbiology & Biotechnology, 2011, 38, 5, 617

    CrossRef

  28. 28
    Ramesh Chander Kuhad, Rishi Gupta, Yogender Pal Khasa, Ajay Singh, Y.-H. Percival Zhang, Bioethanol production from pentose sugars: Current status and future prospects, Renewable and Sustainable Energy Reviews, 2011, 15, 9, 4950

    CrossRef

  29. 29
    Sabine Bastian, Xiang Liu, Joseph T. Meyerowitz, Christopher D. Snow, Mike M.Y. Chen, Frances H. Arnold, Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli, Metabolic Engineering, 2011, 13, 3, 345

    CrossRef

  30. 30
    Manfred T. Reetz, Gerichtete Evolution stereoselektiver Enzyme: Eine ergiebige Katalysator-Quelle für asymmetrische Reaktionen, Angewandte Chemie, 2011, 123, 1
  31. 31
    Nádia Skorupa Parachin, Basti Bergdahl, Ed W.J. van Niel, Marie F. Gorwa-Grauslund, Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae, Metabolic Engineering, 2011, 13, 5, 508

    CrossRef

  32. 32
    Manfred T. Reetz, Laboratory Evolution of Stereoselective Enzymes: A Prolific Source of Catalysts for Asymmetric Reactions, Angewandte Chemie International Edition, 2011, 50, 1
  33. 33
    Ronald E. Hector, Jeffrey A. Mertens, Michael J. Bowman, Nancy N. Nichols, Michael A. Cotta, Stephen R. Hughes, Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation, Yeast, 2011, 28, 9
  34. 34
    João R. M. Almeida, David Runquist, Violeta Sànchez Nogué, Gunnar Lidén, Marie F. Gorwa-Grauslund, Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae, Biotechnology Journal, 2011, 6, 3
  35. 35
    Byoungjin Kim, Ryan P. Sullivan, Huimin Zhao, Cloning, characterization, and engineering of fungal L-arabinitol dehydrogenases, Applied Microbiology and Biotechnology, 2010, 87, 4, 1407

    CrossRef

  36. 36
    Shiqi Hong, Jinchuan Wu, Hua Zhao, Cloning, overexpression, purification, and site-directed mutagenesis of xylitol-2-dehydrogenase from Candida albicans, Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 1, 40

    CrossRef

  37. 37
    Rosa Garcia Sanchez, Bärbel Hahn-Hägerdal, Marie F Gorwa-Grauslund, PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae, Microbial Cell Factories, 2010, 9, 1, 40

    CrossRef

  38. 38
    Christian Weber, Alexander Farwick, Feline Benisch, Dawid Brat, Heiko Dietz, Thorsten Subtil, Eckhard Boles, Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels, Applied Microbiology and Biotechnology, 2010, 87, 4, 1303

    CrossRef

  39. 39
    Stefan Krahulec, Mario Klimacek, Bernd Nidetzky, Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae, Biotechnology Journal, 2009, 4, 5
  40. 40
    Akinori Matsushika, Hiroyuki Inoue, Tsutomu Kodaki, Shigeki Sawayama, Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives, Applied Microbiology and Biotechnology, 2009, 84, 1, 37

    CrossRef

  41. 41
    Fei Wen, Nikhil U Nair, Huimin Zhao, Protein engineering in designing tailored enzymes and microorganisms for biofuels production, Current Opinion in Biotechnology, 2009, 20, 4, 412

    CrossRef

  42. 42
    Qi-Kai Zeng, Hong-Li Du, Jing-Fang Wang, Dong-Qing Wei, Xiao-Ning Wang, Yi-Xue Li, Ying Lin, Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis, Biotechnology Letters, 2009, 31, 7, 1025

    CrossRef

  43. 43
    Barbara Petschacher, Bernd Nidetzky, Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae, Microbial Cell Factories, 2008, 7, 1, 9

    CrossRef

  44. 44
    Akinori Matsushika, Seiya Watanabe, Tsutomu Kodaki, Keisuke Makino, Hiroyuki Inoue, Katsuji Murakami, Osamu Takimura, Shigeki Sawayama, Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae, Applied Microbiology and Biotechnology, 2008, 81, 2, 243

    CrossRef

  45. 45
    Oskar Bengtsson, Marie Jeppsson, Marco Sonderegger, Nadia Skorupa Parachin, Uwe Sauer, Bärbel Hahn-Hägerdal, Marie-F. Gorwa-Grauslund, Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering, Yeast, 2008, 25, 11
  46. 46
    Olubolaji Akinterinwa, Reza Khankal, Patrick Carmen Cirino, Metabolic engineering for bioproduction of sugar alcohols, Current Opinion in Biotechnology, 2008, 19, 5, 461

    CrossRef

  47. 47
    O. V. Dmytruk, K. V. Dmytruk, A. Ya. Voronovsky, A. A. Sibirny, Metabolic engineering of the initial stages of xylose catabolism in yeast for the purpose of constructing efficient producers of ethanol from lignocellulosics, Cytology and Genetics, 2008, 42, 2, 127

    CrossRef

  48. 48
    O. V. Dmytruk, K. V. Dmytruk, A. Ya. Voronovsky, A. A. Sibirny, Metabolic engineering of the initial stages of xylose catabolism in yeast for the purpose of constructing efficient producers of ethanol from lignocellulosics, Cytology and Genetics, 2008, 42, 2, 127

    CrossRef

  49. 49
    J. Hou, Y. Shen, X.P. Li, X.M. Bao, Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae, Letters in Applied Microbiology, 2007, 45, 2
  50. 50
    Seiya Watanabe, Ahmed Abu Saleh, Seung Pil Pack, Narayana Annaluru, Tsutomu Kodaki, Keisuke Makino, Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase, Journal of Biotechnology, 2007, 130, 3, 316

    CrossRef

  51. 51
    Byron C.H. Chu, Hung Lee, Genetic improvement of Saccharomyces cerevisiae for xylose fermentation, Biotechnology Advances, 2007, 25, 5, 425

    CrossRef

  52. 52
    Seiya WATANABE, Seung Pil PACK, Ahmed Abu SALEH, Narayana ANNALURU, Tsutomu KODAKI, Keisuke MAKINO, The Positive Effect of the Decreased NADPH-Preferring Activity of Xylose Reductase fromPichia stipitison Ethanol Production Using Xylose-Fermenting RecombinantSaccharomyces cerevisiae, Bioscience, Biotechnology and Biochemistry, 2007, 71, 5, 1365

    CrossRef

  53. 53
    Bärbel Hahn-Hägerdal, Kaisa Karhumaa, César Fonseca, Isabel Spencer-Martins, Marie F. Gorwa-Grauslund, Towards industrial pentose-fermenting yeast strains, Applied Microbiology and Biotechnology, 2007, 74, 5, 937

    CrossRef

  54. 54
    Current awareness on yeast, Yeast, 2006, 23, 14-15
  55. 55
    Kaisa Karhumaa, Romain Fromanger, Bärbel Hahn-Hägerdal, Marie-F. Gorwa-Grauslund, High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae, Applied Microbiology and Biotechnology, 2006, 73, 5, 1039

    CrossRef

  56. 56
    Karin Öhgren, Oskar Bengtsson, Marie F. Gorwa-Grauslund, Mats Galbe, Bärbel Hahn-Hägerdal, Guido Zacchi, Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400, Journal of Biotechnology, 2006, 126, 4, 488

    CrossRef

  57. 57
    References,