SEARCH

SEARCH BY CITATION

References

  • Booth IR. 2005. Glycerol and methylglyoxal metabolism. In: NeidhardtFC, CurtissRIII, IngrahamJL, LinECC, LowKB, MagasanikB, ReznikoffWS, RileyM, SchaechterM, UmbargerHE, editors. Escherichia coli and Salmonella: Cellular and molecular biology (web edition) Washington DC: ASM Press. Available at www.ecosal.org.
  • Bouvet OM, Lenormand P, Ageron E, Grimont PA. 1995. Taxonomic diversity of anaerobic glycerol dissimilation in the Enterobacteriaceae. Res Microbiol 146: 279290.
  • de Graef MR, Alexeeva S, Snoep JL, Teixeira de Mattos MJ. 1999. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181: 23512357.
  • Dharmadi Y, Gonzalez R. 2005. A better global resolution function and a novel iterative stochastic search method for optimization of HPLC separation. J Chromatogr A 1070: 89101.
  • Ferguson GP, McLaggan D, Booth IR. 1995. Potassium channel activation by glutathione-S-conjugates in Escherichia coli: Protection against methylglyoxal is mediated by cytoplasmic acidification. Mol Microbiol 17: 10251033.
  • Gonzalez R. 2005. Metabolic engineering of bacteria for food ingredients. In: ShettyK, PomettoA, PaliyathG, editors. Food Biotechnology. Florida: CRC Press. p 111130.
  • Gonzalez R, Tao H, Shanmugam KT, York SW, Ingram LO. 2002. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Biotechnol Prog 18: 620.
  • Hakobyan M, Sargsyan H, Bagramyan K. 2005. Proton translocation coupled to formate oxidation in anaerobically grown fermenting Escherichia coli. Biophys Chem 115: 5561.
  • Ingraham JL, Marr AG. 1996. Effect of temperature, pressure, pH, and osmotic stress on growth. In: NeidhardtFC, CurtissRIII, IngrahamJL, LinECC, LowKB, MagasanikB, ReznikoffWS, RileyM, SchaechterM, UmbargerHE, editors. Escherichia coli and Salmonella: Cellular and molecular biology. Washington DC: ASM Press. p 15701578.
  • Jin RZ, Tang JC, Lin EC. 1983. Experimental evolution of a novel pathway for glycerol dissimilation in Escherichia coli. J Mol Evol 19: 429436.
  • Kang Y, Durfee T, Glasner JD, Qiu Y, Frisch D, Winterberg KM, Blattner FR. 2004. Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186: 49214930.
  • Lacoursiere A, Thompson BG, Kole MN, Ward D, Gerson DF. 1986. Effects of carbon-dioxide concentration on anaerobic fermentations of Escherichia coli. Appl Microbiol Biot 23: 404406.
  • Lawford HG, Rousseau JD. 1996. Studies on nutrient requirements and cost-effective supplements for ethanol production by recombinant E. coli. Appl Biochem Biotechnol 57-58: 307326.
  • McCoy M. 2005. An unlikely impact. Chem Eng News 83: 2426.
  • McCoy M. 2006. Glycerin Surplus. Chem Eng News 84: 78.
  • Merlin C, Masters M, McAteer S, Coulson A. 2003. Why is carbonic anhydrase essential to Escherichia coli? J Bacteriol 185: 64156424.
  • Neidhardt FC, Bloch PL, Smith DF. 1974. Culture medium for enterobacteria. J Bacteriol 119: 736747.
  • Nielsen J. 2001. Metabolic engineering. Appl Microbiol Biotech 55: 263283.
  • Reitzer L. 2005. Catabolism of amino acids and related compounds. In: NeidhardtFC, CurtissRIII, IngrahamJL, LinECC, LowKB, MagasanikB, ReznikoffWS, RileyM, SchaechterM, UmbargerHE, editors. Escherichia coli and Salmonella: Cellular and molecular biology (web edition) Washington DC: ASM Press. Available at www. ecosal.org.
  • Repaske R, Clayton MA. 1978. Control of Escherichia coli growth by CO2. J Bacteriol 135: 11621164.
  • Sawers G, Clark DP. 2004. Fermentative pyruvate and acetyl-coenzyme A metabolism. In: NeidhardtFC, CurtissRIII, IngrahamJL, LinECC, LowKB, MagasanikB, ReznikoffWS, RileyM, SchaechterM, UmbargerHE, editors. Escherichia coli and Salmonella: Cellular and molecular biology ( web edition) Washington DC: ASM Press. Available at www.ecosal.org.
  • Sawers RG, Blokesch M, Böck A. 2004. Anaerobic formate and hydrogen metabolism. In: NeidhardtFC, CurtissRIII, IngrahamJL, LinECC, LowKB, MagasanikB, ReznikoffWS, RileyM, SchaechterM, UmbargerHE, editors. Escherichia coli andSalmonella: Cellular and molecular biology ( web edition) Washington DC: ASM Press. Available at www.ecosal.org.
  • Schryvers A, Weiner JH. 1981. The anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli. Purification and characterization. J Biol Chem 256: 99599965.
  • Schryvers A, Lohmeier E, Weiner JH. 1978. Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. J Biol Chem 253: 783788.
  • Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T. 2002. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria. J Biol Chem 277: 1865818664.
  • Stafford DE, Stephanopoulos G. 2001. Metabolic engineering as an integrating platform for strain development. Curr Op Microbiol 4: 336340.
  • Sterling D, Casey JR. 2002. Bicarbonate transport proteins. Biochem Cell Biol 80: 483497.
  • Tanaka S, Lerner SA, Lin EC. 1967. Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. J Bacteriol 93: 642648.
  • Tang JC, Forage RG, Lin EC. 1982a. Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae. J Bacteriol 152: 11691174.
  • Tang JC, St Martin EJ, Lin EC. 1982b. Derepression of an NAD-linked dehydrogenase that serves an Escherichia coli mutant for growth on glycerol. J Bacteriol 152: 10011007.
  • Thomsen MH. 2005. Complex media from processing of agricultural crops for microbial fermentation. Appl Microbiol Biotechnol 68: 598606.
  • Totemeyer S, Booth NA, Nichols WW, Dunbar B, Booth IR. 1998. From famine to feast: The role of methylglyoxal production in Escherichiacoli. Mol Microbiol 27: 553562.
  • Trchounian AA, Bagramyan KA, Vassilian AV, Poladian AA. 2000. Relationship between formate hydrogen lyase and proton-potassium pump under heterolactic fermentation in Escherichia coli: Functional multienzyme associations in the cell membrane. Membr Cell Biol 13: 511526.
  • Tyson KS, Bozell J, Wallace R, Petersen E, Moens L. 2004. Biomass Oil Analysis: Research Needs and Recommendations. Technical Report, National Renewable Energy Laboratory, U.S. Department of Energy. Available at eereweb.ee.doe.gov/biomass/pdfs/34796.pdf
  • Unden G, Kleefeld A. 2004. C4-Dicarboxylate degradation in aerobic and anaerobic growth. In: NeidhardtFC, CurtissRIII, IngrahamJL, LinECC, LowKB, MagasanikB, ReznikoffWS, RileyM, SchaechterM, UmbargerHE, editors. Escherichia coli and Salmonella: Cellular and molecular biology ( web edition) Washington DC: ASM Press. Available at www.ecosal.org.
  • Vemuri GN, Eiteman MA, Altman E. 2002. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 68: 17151727.
  • Willke T, Vorlop KD. 2004. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66: 131142.