Plant cell calcium-rich environment enhances thermostability of recombinantly produced α-amylase from the hyperthermophilic bacterium Thermotoga maritime

Authors

  • Monica C. Santa-Maria,

    1. Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, North Carolina 27695; telephone: 919-513-3883; fax: 919-515-2505
    Current affiliation:
    1. Department of Biological and Agricultural Engineering, University of California, Davis, California.
    Search for more papers by this author
  • Chung-Jung Chou,

    1. Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
    Search for more papers by this author
  • G. Craig Yencho,

    1. Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, North Carolina 27695; telephone: 919-513-3883; fax: 919-515-2505
    Search for more papers by this author
  • Candace H. Haigler,

    1. Department of Crop Science, North Carolina State University, Raleigh, North Carolina
    2. Department of Plant Biology, North Carolina State University, Raleigh, North Carolina
    Search for more papers by this author
  • William F. Thompson,

    1. Department of Plant Biology, North Carolina State University, Raleigh, North Carolina
    2. Department of Genetics, North Carolina State University, Raleigh, North Carolina
    Search for more papers by this author
  • Robert M. Kelly,

    1. Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
    Search for more papers by this author
  • Bryon Sosinski

    Corresponding author
    1. Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, North Carolina 27695; telephone: 919-513-3883; fax: 919-515-2505
    • Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, North Carolina 27695; telephone: 919-513-3883; fax: 919-515-2505.
    Search for more papers by this author

Abstract

In the industrial processing of starch for sugar syrup and ethanol production, a liquefaction step is involved where starch is initially solubilized at high temperature and partially hydrolyzed with a thermostable and thermoactive α-amylase. Most amylases require calcium as a cofactor for their activity and stability, therefore calcium, along with the thermostable enzyme, are typically added to the starch mixture during enzymatic liquefaction, thereby increasing process costs. An attractive alternative would be to produce the enzyme directly in the tissue to be treated. In a proof of concept study, tobacco cell cultures were used as model system to test in planta production of a hyperthermophilic α-amylase from Thermotoga maritima. While comparable biochemical properties to recombinant production in Escherichia coli were observed, thermostability of the plant-produced α-amylase benefited significantly from high intrinsic calcium levels in the tobacco cells. The plant-made enzyme retained 85% of its initial activity after 3 h incubation at 100°C, whereas the E. coli-produced enzyme was completely inactivated after 30 min under the same conditions. The addition of Ca2+ or plant cell extracts from tobacco and sweetpotato to the E. coli-produced enzyme resulted in a similar stabilization, demonstrating the importance of a calcium-rich environment for thermostability, as well as the advantage of producing this enzyme directly in plant cells where calcium is readily available. Biotechnol. Bioeng. 2009; 104: 947–956. © 2009 Wiley Periodicals, Inc.

Ancillary