• bioreactor expansion;
  • cell therapy;
  • long-term expansion;
  • neural precursor cells;
  • neuronal differentiation;
  • serum-free medium;
  • suspension culture


Human neural precursor cells (hNPCs), harvested from somatic tissue and grown in vitro, may serve as a source of cells for cell replacement strategies aimed at treating neurodegenerative disorders such as Parkinson's disease (PD), Huntington's disease (HD), and intractable spinal cord pain. A crucial element in a robust clinical production method for hNPCs is a serum-free growth medium that can support the rapid expansion of cells while retaining their multipotency. Here, we report the development of a cell growth medium (PPRF-h2) for the expansion of hNPCs, achieving an overall cell-fold expansion of 1013 over a period of 140 days in stationary culture which is significantly greater than other literature results. More importantly, hNPC expansion could be scaled-up from stationary culture to suspension bioreactors using this medium. Serial subculturing of the cells in suspension bioreactors resulted in an overall cell-fold expansion of 7.8 × 1013 after 140 days. These expanded cells maintained their multipotency including the capacity to generate large numbers of neurons (about 60%). In view of our previous studies regarding successful transplantation of the bioreactor-expanded hNPCs in animal models of neurological disorders, these results have demonstrated that PPRF-h2 (containing dehydroepiandrosterone, basic fibroblast growth factor and human leukemia inhibitory factor) can successfully facilitate the production of large quantities of hNPCs with potential to be used in the treatment of neurodegenerative disorders. Biotechnol. Bioeng. 2010. 105: 823–833. © 2009 Wiley Periodicals, Inc.