Get access

Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering

Authors

  • Ki-Sung Lee,

    1. School of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746, Korea
    Search for more papers by this author
  • Min-Eui Hong,

    1. School of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746, Korea
    Search for more papers by this author
  • Suk-Chae Jung,

    1. School of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746, Korea
    Search for more papers by this author
  • Suk-Jin Ha,

    1. Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, Illinois 61801; telephone: +217-333-7981; fax: +217-333-0508
    2. Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
    Search for more papers by this author
  • Byung Jo Yu,

    1. Emerging Technology Research Center, Samsung Advanced Institute of Technology, Yongin 446-712, Korea; telephone: +82-31-280-6990; fax: +82-31-280-6816
    Search for more papers by this author
  • Hyun Min Koo,

    1. Emerging Technology Research Center, Samsung Advanced Institute of Technology, Yongin 446-712, Korea; telephone: +82-31-280-6990; fax: +82-31-280-6816
    Search for more papers by this author
  • Sung Min Park,

    1. Emerging Technology Research Center, Samsung Advanced Institute of Technology, Yongin 446-712, Korea; telephone: +82-31-280-6990; fax: +82-31-280-6816
    Search for more papers by this author
  • Jin-Ho Seo,

    1. Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
    Search for more papers by this author
  • Dae-Hyuk Kweon,

    1. School of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746, Korea
    Search for more papers by this author
  • Jae Chan Park,

    Corresponding author
    1. Emerging Technology Research Center, Samsung Advanced Institute of Technology, Yongin 446-712, Korea; telephone: +82-31-280-6990; fax: +82-31-280-6816
    • Emerging Technology Research Center, Samsung Advanced Institute of Technology, Yongin 446-712, Korea; telephone: +82-31-280-6990; fax: +82-31-280-6816.
    Search for more papers by this author
  • Yong-Su Jin

    Corresponding author
    1. Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, Illinois 61801; telephone: +217-333-7981; fax: +217-333-0508
    2. Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
    • Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, Illinois 61801; telephone: +217-333-7981; fax: +217-333-0508.
    Search for more papers by this author

Abstract

Although Saccharomyces cerevisiae is capable of fermenting galactose into ethanol, ethanol yield and productivity from galactose are significantly lower than those from glucose. An inverse metabolic engineering approach was undertaken to improve ethanol yield and productivity from galactose in S. cerevisiae. A genome-wide perturbation library was introduced into S. cerevisiae, and then fast galactose-fermenting transformants were screened using three different enrichment methods. The characterization of genetic perturbations in the isolated transformants revealed three target genes whose overexpression elicited enhanced galactose utilization. One confirmatory (SEC53 coding for phosphomannomutase) and two novel targets (SNR84 coding for a small nuclear RNA and a truncated form of TUP1 coding for a general repressor of transcription) were identified as overexpression targets that potentially improve galactose fermentation. Beneficial effects of overexpression of SEC53 may be similar to the mechanisms exerted by overexpression of PGM2 coding for phosphoglucomutase. While the mechanism is largely unknown, overexpression of SNR84, improved both growth and ethanol production from galactose. The most remarkable improvement of galactose fermentation was achieved by overexpression of the truncated TUP1 (tTUP1) gene, resulting in unrivalled galactose fermentation capability, that is 250% higher in both galactose consumption rate and ethanol productivity compared to the control strain. Moreover, the overexpression of tTUP1 significantly shortened lag periods that occurs when substrate is changed from glucose to galactose. Based on these results we proposed a hypothesis that the mutant Tup1 without C-terminal repression domain might bring in earlier and higher expression of GAL genes through partial alleviation of glucose repression. mRNA levels of GAL genes (GAL1, GAL4, and GAL80) indeed increased upon overexpression of tTUP. The results presented in this study illustrate that alteration of global regulatory networks through overexpression of the identified targets (SNR84 and tTUP1) is as effective as overexpression of a rate limiting metabolic gene (PGM2) in the galactose assimilation pathway for efficient galactose fermentation in S. cerevisiae. In addition, these results will be industrially useful in the biofuels area as galactose is one of the abundant sugars in marine plant biomass such as red seaweed as well as cheese whey and molasses. Biotechnol. Bioeng. 2011; 108:621–631. © 2010 Wiley Periodicals, Inc.

Get access to the full text of this article

Ancillary