SEARCH

SEARCH BY CITATION

Keywords:

  • L-valine;
  • L-valine tolerance;
  • Escherichia coli W strain;
  • metabolic engineering

Abstract

A less frequently employed Escherichia coli strain W, yet possessing useful metabolic characteristics such as less acetic acid production and high L-valine tolerance, was metabolically engineered for the production of L-valine. The ilvA gene was deleted to make more pyruvate, a key precursor for L-valine, available for enhanced L-valine biosynthesis. The lacI gene was deleted to allow constitutive expression of genes under the tac or trc promoter. The ilvBNmut genes encoding feedback-resistant acetohydroxy acid synthase (AHAS) I and the L-valine biosynthetic ilvCED genes encoding acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and branched chain amino acid aminotransferase, respectively, were amplified by plasmid-based overexpression. The global regulator Lrp and L-valine exporter YgaZH were also amplified by plasmid-based overexpression. The engineered E. coli W (ΔlacI ΔilvA) strain overexpressing the ilvBNmut, ilvCED, ygaZH, and lrp genes was able to produce an impressively high concentration of 60.7 g/L L-valine by fed-batch culture in 29.5 h, resulting in a high volumetric productivity of 2.06 g/L/h. The most notable finding is that there was no other byproduct produced during L-valine production. The results obtained in this study suggest that E. coli W can be a good alternative to Corynebacterium glutamicum and E. coli K-12, which have so far been the most efficient L-valine producer. Furthermore, it is expected that various bioproducts including other amino acids might be more efficiently produced by this revisited platform strain of E. coli. Bioeng. 2011; 108:1140–1147. © 2010 Wiley Periodicals, Inc.