• cell banking strategy;
  • recombinant polyclonal antibody;
  • manufacturing consistency;
  • characterization strategy


The beneficial effect of antibody therapy in human disease has become well established mainly for the treatment of cancer and immunological disorders. The inherent monospecificity of mAbs present limitations to mAb therapy which have become apparent notably in addressing complex entities like infectious agents or heterogenic endogenous targets. For such indications mixtures of antibodies comprising a combination of specificities would convey more potent biological effect which could translate into therapeutic efficacy. Recombinant polyclonal antibodies (rpAb) consisting of a defined number of well-characterized mAbs constitute a new class of target specific antibody therapy. We have developed a cost-efficient cell banking and single-batch manufacturing concept for the production of such products and demonstrate that a complex pAb composition, rozrolimupab, comprising 25 individual antibodies can be manufactured in a highly consistent manner in a scaled-up manufacturing process. We present a strategy for the release and characterization of antibody mixtures which constitute a complete series of chemistry, manufacturing, and control (CMC) analytical methods to address identity, purity, quantity, potency, and general characteristics. Finally we document selected quality attributes of rozrolimupab based on a battery of assays at the genetic-, protein-, and functional level and demonstrate that the manufactured rozrolimupab batches are highly pure and very uniform in their composition. Biotechnol. Bioeng. 2011;108:2171–2181. © 2011 Wiley Periodicals, Inc.