SEARCH

SEARCH BY CITATION

Keywords:

  • β-glucosidase;
  • Trichoderma reesei;
  • xyn3;
  • Aspergillus aculeatus;
  • cellulase;
  • bioconversion

Abstract

To develop a Trichoderma reesei strain appropriate for the saccharification of pretreated cellulosic biomass, a recombinant T. reesei strain, X3AB1, was constructed that expressed an Aspergillus aculeatus β-glucosidase 1 with high specific activity under the control of the xyn3 promoter. The culture supernatant from T. reesei X3AB1 grown on 1% Avicel as a carbon source had 63- and 25-fold higher β-glucosidase activity against cellobiose compared to that of the parent strain PC-3-7 and that of the T. reesei recombinant strain expressing an endogenous β-glucosidase I, respectively. Further, the xylanase activity was 30% lower than that of PC-3-7 due to the absence of xyn3. X3AB1 grown on 1% Avicel-0.5% xylan medium produced 2.3- and 3.3-fold more xylanase and β-xylosidase, respectively, than X3AB1 grown on 1% Avicel. The supernatant from X3AB1 grown on Avicel and xylan saccharified NaOH-pretreated rice straw efficiently at a low enzyme dose, indicating that the strain has good potential for use in cellulosic biomass conversion processes. Biotechnol. Bioeng. 2012;109: 92–99. © 2011 Wiley Periodicals, Inc.