• molecular biomimetics;
  • bionanotechnology;
  • solid-binding peptides;
  • inorganic-binding peptides


Designer proteins that incorporate solid-binding peptides hold promise to control the nucleation, growth, morphology, and assembly of inorganic phases under mild conditions of temperature and pressure. However, protein-aided nanofabrication remains more art than science and some materials can only be synthesized at temperatures that cause most mesophilic proteins to unfold. Using zinc oxide (ZnO) synthesis at 70°C as case study, we show here that seemingly unimportant variables, such as the carry-over concentration of Tris buffer and the “empty” host protein scaffold can exert a significant influence on materials morphology. We also show that, once well-controlled conditions are established, thermodynamic predictions and adsorption isotherms are powerful tools to understand how various ZnO-binding sequence inserted within the thermostable framework of Escherichia coli thioredoxin A (TrxA) affect inorganic morphogenesis. Biotechnol. Bioeng. 2012; 109:1912–1918. © 2012 Wiley Periodicals, Inc.